
Python Setup and Usage
Release 3.4.3

Guido van Rossum
and the Python development team

July 14, 2015

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Command line and environment 3
1.1 Command line . 3
1.2 Environment variables . 8

2 Using Python on Unix platforms 11
2.1 Getting and installing the latest version of Python . 11
2.2 Building Python . 12
2.3 Python-related paths and files . 12
2.4 Miscellaneous . 12
2.5 Editors . 12

3 Using Python on Windows 15
3.1 Installing Python . 15
3.2 Alternative bundles . 15
3.3 Configuring Python . 16
3.4 Python Launcher for Windows . 18
3.5 Additional modules . 21
3.6 Compiling Python on Windows . 22
3.7 Other resources . 22

4 Using Python on a Macintosh 23
4.1 Getting and Installing MacPython . 23
4.2 The IDE . 24
4.3 Installing Additional Python Packages . 24
4.4 GUI Programming on the Mac . 24
4.5 Distributing Python Applications on the Mac . 25
4.6 Other Resources . 25

5 Additional Tools and Scripts 27
5.1 pyvenv - Creating virtual environments . 27

A Glossary 29

B About these documents 39
B.1 Contributors to the Python Documentation . 39

C History and License 41
C.1 History of the software . 41
C.2 Terms and conditions for accessing or otherwise using Python . 41
C.3 Licenses and Acknowledgements for Incorporated Software . 44

D Copyright 57

i

Index 59

ii

Python Setup and Usage, Release 3.4.3

This part of the documentation is devoted to general information on the setup of the Python environment on different
platform, the invocation of the interpreter and things that make working with Python easier.

CONTENTS 1

Python Setup and Usage, Release 3.4.3

2 CONTENTS

CHAPTER

ONE

COMMAND LINE AND ENVIRONMENT

The CPython interpreter scans the command line and the environment for various settings.

CPython implementation detail: Other implementations’ command line schemes may differ. See implementations
for further resources.

1.1 Command line

When invoking Python, you may specify any of these options:

python [-bBdEhiIOqsSuvVWx?] [-c command | -m module-name | script | -] [args]

The most common use case is, of course, a simple invocation of a script:

python myscript.py

1.1.1 Interface options

The interpreter interface resembles that of the UNIX shell, but provides some additional methods of invocation:

• When called with standard input connected to a tty device, it prompts for commands and executes them until an
EOF (an end-of-file character, you can produce that with Ctrl-D on UNIX or Ctrl-Z, Enter on Windows) is read.

• When called with a file name argument or with a file as standard input, it reads and executes a script from that
file.

• When called with a directory name argument, it reads and executes an appropriately named script from that
directory.

• When called with -c command, it executes the Python statement(s) given as command. Here command may
contain multiple statements separated by newlines. Leading whitespace is significant in Python statements!

• When called with -m module-name, the given module is located on the Python module path and executed as
a script.

In non-interactive mode, the entire input is parsed before it is executed.

An interface option terminates the list of options consumed by the interpreter, all consecutive arguments will end up in
sys.argv – note that the first element, subscript zero (sys.argv[0]), is a string reflecting the program’s source.

-c <command>
Execute the Python code in command. command can be one or more statements separated by newlines, with
significant leading whitespace as in normal module code.

If this option is given, the first element of sys.argv will be "-c" and the current directory will be added to
the start of sys.path (allowing modules in that directory to be imported as top level modules).

3

Python Setup and Usage, Release 3.4.3

-m <module-name>
Search sys.path for the named module and execute its contents as the __main__ module.

Since the argument is a module name, you must not give a file extension (.py). The module-name should be
a valid Python module name, but the implementation may not always enforce this (e.g. it may allow you to use
a name that includes a hyphen).

Package names (including namespace packages) are also permitted. When a package name is supplied instead
of a normal module, the interpreter will execute <pkg>.__main__ as the main module. This behaviour is
deliberately similar to the handling of directories and zipfiles that are passed to the interpreter as the script
argument.

Note: This option cannot be used with built-in modules and extension modules written in C, since they do not
have Python module files. However, it can still be used for precompiled modules, even if the original source file
is not available.

If this option is given, the first element of sys.argv will be the full path to the module file (while the module
file is being located, the first element will be set to "-m"). As with the -c option, the current directory will be
added to the start of sys.path.

Many standard library modules contain code that is invoked on their execution as a script. An example is the
timeit module:

python -mtimeit -s 'setup here' 'benchmarked code here'
python -mtimeit -h # for details

See also:

runpy.run_module() Equivalent functionality directly available to Python code

PEP 338 – Executing modules as scripts

Changed in version 3.1: Supply the package name to run a __main__ submodule.

Changed in version 3.4: namespace packages are also supported

-
Read commands from standard input (sys.stdin). If standard input is a terminal, -i is implied.

If this option is given, the first element of sys.argv will be "-" and the current directory will be added to the
start of sys.path.

<script>
Execute the Python code contained in script, which must be a filesystem path (absolute or relative) referring to
either a Python file, a directory containing a __main__.py file, or a zipfile containing a __main__.py file.

If this option is given, the first element of sys.argv will be the script name as given on the command line.

If the script name refers directly to a Python file, the directory containing that file is added to the start of
sys.path, and the file is executed as the __main__ module.

If the script name refers to a directory or zipfile, the script name is added to the start of sys.path and the
__main__.py file in that location is executed as the __main__ module.

See also:

runpy.run_path() Equivalent functionality directly available to Python code

4 Chapter 1. Command line and environment

http://www.python.org/dev/peps/pep-0338

Python Setup and Usage, Release 3.4.3

If no interface option is given, -i is implied, sys.argv[0] is an empty string ("") and the current directory will
be added to the start of sys.path. Also, tab-completion and history editing is automatically enabled, if available on
your platform (see rlcompleter-config).

See also:

tut-invoking

Changed in version 3.4: Automatic enabling of tab-completion and history editing.

1.1.2 Generic options

-?
-h
--help

Print a short description of all command line options.

-V
--version

Print the Python version number and exit. Example output could be:

Python 3.0

1.1.3 Miscellaneous options

-b
Issue a warning when comparing str and bytes. Issue an error when the option is given twice (-bb).

-B
If given, Python won’t try to write .pyc or .pyo files on the import of source modules. See also
PYTHONDONTWRITEBYTECODE.

-d
Turn on parser debugging output (for wizards only, depending on compilation options). See also
PYTHONDEBUG.

-E
Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.

-i
When a script is passed as first argument or the -c option is used, enter interactive mode after executing the
script or the command, even when sys.stdin does not appear to be a terminal. The PYTHONSTARTUP file
is not read.

This can be useful to inspect global variables or a stack trace when a script raises an exception. See also
PYTHONINSPECT.

-I
Run Python in isolated mode. This also implies -E and -s. In isolated mode sys.path contains neither the
script’s directory nor the user’s site-packages directory. All PYTHON* environment variables are ignored, too.
Further restrictions may be imposed to prevent the user from injecting malicious code.

New in version 3.4.

-O
Turn on basic optimizations. This changes the filename extension for compiled (bytecode) files from .pyc to
.pyo. See also PYTHONOPTIMIZE.

1.1. Command line 5

Python Setup and Usage, Release 3.4.3

-OO
Discard docstrings in addition to the -O optimizations.

-q
Don’t display the copyright and version messages even in interactive mode.

New in version 3.2.

-R
Kept for compatibility. On Python 3.3 and greater, hash randomization is turned on by default.

On previous versions of Python, this option turns on hash randomization, so that the __hash__() values of
str, bytes and datetime are “salted” with an unpredictable random value. Although they remain constant within
an individual Python process, they are not predictable between repeated invocations of Python.

Hash randomization is intended to provide protection against a denial-of-service caused by carefully-
chosen inputs that exploit the worst case performance of a dict construction, O(n^2) complexity. See
http://www.ocert.org/advisories/ocert-2011-003.html for details.

PYTHONHASHSEED allows you to set a fixed value for the hash seed secret.

New in version 3.2.3.

-s
Don’t add the user site-packages directory to sys.path.

See also:

PEP 370 – Per user site-packages directory

-S
Disable the import of the module site and the site-dependent manipulations of sys.path that it entails. Also
disable these manipulations if site is explicitly imported later (call site.main() if you want them to be
triggered).

-u
Force the binary layer of the stdout and stderr streams (which is available as their buffer attribute) to be
unbuffered. The text I/O layer will still be line-buffered if writing to the console, or block-buffered if redirected
to a non-interactive file.

See also PYTHONUNBUFFERED.

-v
Print a message each time a module is initialized, showing the place (filename or built-in module) from which
it is loaded. When given twice (-vv), print a message for each file that is checked for when searching for a
module. Also provides information on module cleanup at exit. See also PYTHONVERBOSE.

-W arg
Warning control. Python’s warning machinery by default prints warning messages to sys.stderr. A typical
warning message has the following form:

file:line: category: message

By default, each warning is printed once for each source line where it occurs. This option controls how often
warnings are printed.

Multiple -W options may be given; when a warning matches more than one option, the action for the last
matching option is performed. Invalid -W options are ignored (though, a warning message is printed about
invalid options when the first warning is issued).

Warnings can also be controlled from within a Python program using the warnings module.

The simplest form of argument is one of the following action strings (or a unique abbreviation):

6 Chapter 1. Command line and environment

http://www.ocert.org/advisories/ocert-2011-003.html
http://www.python.org/dev/peps/pep-0370

Python Setup and Usage, Release 3.4.3

ignore Ignore all warnings.

default Explicitly request the default behavior (printing each warning once per source line).

all Print a warning each time it occurs (this may generate many messages if a warning is triggered repeatedly
for the same source line, such as inside a loop).

module Print each warning only the first time it occurs in each module.

once Print each warning only the first time it occurs in the program.

error Raise an exception instead of printing a warning message.

The full form of argument is:

action:message:category:module:line

Here, action is as explained above but only applies to messages that match the remaining fields. Empty fields
match all values; trailing empty fields may be omitted. The message field matches the start of the warning
message printed; this match is case-insensitive. The category field matches the warning category. This must be
a class name; the match tests whether the actual warning category of the message is a subclass of the specified
warning category. The full class name must be given. The module field matches the (fully-qualified) module
name; this match is case-sensitive. The line field matches the line number, where zero matches all line numbers
and is thus equivalent to an omitted line number.

See also:

warnings – the warnings module

PEP 230 – Warning framework

PYTHONWARNINGS

-x
Skip the first line of the source, allowing use of non-Unix forms of #!cmd. This is intended for a DOS specific
hack only.

Note: The line numbers in error messages will be off by one.

-X
Reserved for various implementation-specific options. CPython currently defines the following possible values:

•-X faulthandler to enable faulthandler;

•-X showrefcount to enable the output of the total reference count and memory blocks (only works on
debug builds);

•-X tracemalloc to start tracing Python memory allocations using the tracemalloc module. By
default, only the most recent frame is stored in a traceback of a trace. Use -X tracemalloc=NFRAME
to start tracing with a traceback limit of NFRAME frames. See the tracemalloc.start() for more
information.

It also allows to pass arbitrary values and retrieve them through the sys._xoptions dictionary.

Changed in version 3.2: It is now allowed to pass -X with CPython.

New in version 3.3: The -X faulthandler option.

New in version 3.4: The -X showrefcount and -X tracemalloc options.

1.1. Command line 7

http://www.python.org/dev/peps/pep-0230

Python Setup and Usage, Release 3.4.3

1.1.4 Options you shouldn’t use

-J
Reserved for use by Jython.

1.2 Environment variables

These environment variables influence Python’s behavior, they are processed before the command-line switches other
than -E or -I. It is customary that command-line switches override environmental variables where there is a conflict.

PYTHONHOME
Change the location of the standard Python libraries. By default, the libraries are searched in
prefix/lib/pythonversion and exec_prefix/lib/pythonversion, where prefix and
exec_prefix are installation-dependent directories, both defaulting to /usr/local.

When PYTHONHOME is set to a single directory, its value replaces both prefix and exec_prefix. To
specify different values for these, set PYTHONHOME to prefix:exec_prefix.

PYTHONPATH
Augment the default search path for module files. The format is the same as the shell’s PATH: one or more
directory pathnames separated by os.pathsep (e.g. colons on Unix or semicolons on Windows). Non-
existent directories are silently ignored.

In addition to normal directories, individual PYTHONPATH entries may refer to zipfiles containing pure Python
modules (in either source or compiled form). Extension modules cannot be imported from zipfiles.

The default search path is installation dependent, but generally begins with prefix/lib/pythonversion
(see PYTHONHOME above). It is always appended to PYTHONPATH.

An additional directory will be inserted in the search path in front of PYTHONPATH as described above under In-
terface options. The search path can be manipulated from within a Python program as the variable sys.path.

PYTHONSTARTUP
If this is the name of a readable file, the Python commands in that file are executed before the first prompt is
displayed in interactive mode. The file is executed in the same namespace where interactive commands are
executed so that objects defined or imported in it can be used without qualification in the interactive session.
You can also change the prompts sys.ps1 and sys.ps2 and the hook sys.__interactivehook__ in
this file.

PYTHONOPTIMIZE
If this is set to a non-empty string it is equivalent to specifying the -O option. If set to an integer, it is equivalent
to specifying -O multiple times.

PYTHONDEBUG
If this is set to a non-empty string it is equivalent to specifying the -d option. If set to an integer, it is equivalent
to specifying -d multiple times.

PYTHONINSPECT
If this is set to a non-empty string it is equivalent to specifying the -i option.

This variable can also be modified by Python code using os.environ to force inspect mode on program
termination.

PYTHONUNBUFFERED
If this is set to a non-empty string it is equivalent to specifying the -u option.

PYTHONVERBOSE
If this is set to a non-empty string it is equivalent to specifying the -v option. If set to an integer, it is equivalent
to specifying -v multiple times.

8 Chapter 1. Command line and environment

http://www.jython.org/

Python Setup and Usage, Release 3.4.3

PYTHONCASEOK
If this is set, Python ignores case in import statements. This only works on Windows and OS X.

PYTHONDONTWRITEBYTECODE
If this is set to a non-empty string, Python won’t try to write .pyc or .pyo files on the import of source
modules. This is equivalent to specifying the -B option.

PYTHONHASHSEED
If this variable is not set or set to random, a random value is used to seed the hashes of str, bytes and datetime
objects.

If PYTHONHASHSEED is set to an integer value, it is used as a fixed seed for generating the hash() of the types
covered by the hash randomization.

Its purpose is to allow repeatable hashing, such as for selftests for the interpreter itself, or to allow a cluster of
python processes to share hash values.

The integer must be a decimal number in the range [0,4294967295]. Specifying the value 0 will disable hash
randomization.

New in version 3.2.3.

PYTHONIOENCODING
If this is set before running the interpreter, it overrides the encoding used for stdin/stdout/stderr, in the syntax
encodingname:errorhandler. Both the encodingname and the :errorhandler parts are optional
and have the same meaning as in str.encode().

For stderr, the :errorhandler part is ignored; the handler will always be ’backslashreplace’.

Changed in version 3.4: The encodingname part is now optional.

PYTHONNOUSERSITE
If this is set, Python won’t add the user site-packages directory to sys.path.

See also:

PEP 370 – Per user site-packages directory

PYTHONUSERBASE
Defines the user base directory, which is used to compute the path of the user site-packages
directory and Distutils installation paths for python setup.py install --user.

See also:

PEP 370 – Per user site-packages directory

PYTHONEXECUTABLE
If this environment variable is set, sys.argv[0] will be set to its value instead of the value got through the C
runtime. Only works on Mac OS X.

PYTHONWARNINGS
This is equivalent to the -W option. If set to a comma separated string, it is equivalent to specifying -W multiple
times.

PYTHONFAULTHANDLER
If this environment variable is set to a non-empty string, faulthandler.enable() is called at startup:
install a handler for SIGSEGV, SIGFPE, SIGABRT, SIGBUS and SIGILL signals to dump the Python trace-
back. This is equivalent to -X faulthandler option.

New in version 3.3.

PYTHONTRACEMALLOC
If this environment variable is set to a non-empty string, start tracing Python memory allocations using the

1.2. Environment variables 9

http://www.python.org/dev/peps/pep-0370
http://www.python.org/dev/peps/pep-0370

Python Setup and Usage, Release 3.4.3

tracemalloc module. The value of the variable is the maximum number of frames stored in a trace-
back of a trace. For example, PYTHONTRACEMALLOC=1 stores only the most recent frame. See the
tracemalloc.start() for more information.

New in version 3.4.

PYTHONASYNCIODEBUG
If this environment variable is set to a non-empty string, enable the debug mode of the asyncio module.

New in version 3.4.

1.2.1 Debug-mode variables

Setting these variables only has an effect in a debug build of Python, that is, if Python was configured with the
--with-pydebug build option.

PYTHONTHREADDEBUG
If set, Python will print threading debug info.

PYTHONDUMPREFS
If set, Python will dump objects and reference counts still alive after shutting down the interpreter.

PYTHONMALLOCSTATS
If set, Python will print memory allocation statistics every time a new object arena is created, and on shutdown.

10 Chapter 1. Command line and environment

CHAPTER

TWO

USING PYTHON ON UNIX PLATFORMS

2.1 Getting and installing the latest version of Python

2.1.1 On Linux

Python comes preinstalled on most Linux distributions, and is available as a package on all others. However there are
certain features you might want to use that are not available on your distro’s package. You can easily compile the latest
version of Python from source.

In the event that Python doesn’t come preinstalled and isn’t in the repositories as well, you can easily make packages
for your own distro. Have a look at the following links:

See also:

http://www.debian.org/doc/manuals/maint-guide/first.en.html for Debian users

http://en.opensuse.org/Portal:Packaging for OpenSuse users

http://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch-creating-rpms.html
for Fedora users

http://www.slackbook.org/html/package-management-making-packages.html for Slackware users

2.1.2 On FreeBSD and OpenBSD

• FreeBSD users, to add the package use:

pkg_add -r python

• OpenBSD users use:

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/<insert your architecture here>/python-<version>.tgz

For example i386 users get the 2.5.1 version of Python using:

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/i386/python-2.5.1p2.tgz

2.1.3 On OpenSolaris

You can get Python from OpenCSW. Various versions of Python are available and can be installed with e.g. pkgutil
-i python27.

11

http://www.debian.org/doc/manuals/maint-guide/first.en.html
http://en.opensuse.org/Portal:Packaging
http://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch-creating-rpms.html
http://www.slackbook.org/html/package-management-making-packages.html
http://www.opencsw.org/

Python Setup and Usage, Release 3.4.3

2.2 Building Python

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the
latest release’s source or just grab a fresh clone. (If you want to contribute patches, you will need a clone.)

The build process consists in the usual

./configure
make
make install

invocations. Configuration options and caveats for specific Unix platforms are extensively documented in the
README file in the root of the Python source tree.

Warning: make install can overwrite or masquerade the python3 binary. make altinstall is there-
fore recommended instead of make install since it only installs exec_prefix/bin/pythonversion.

2.3 Python-related paths and files

These are subject to difference depending on local installation conventions; prefix (${prefix}) and
exec_prefix (${exec_prefix}) are installation-dependent and should be interpreted as for GNU software;
they may be the same.

For example, on most Linux systems, the default for both is /usr.

File/directory Meaning
exec_prefix/bin/python3 Recommended location of the interpreter.
prefix/lib/pythonversion,
exec_prefix/lib/pythonversion

Recommended locations of the directories containing the standard
modules.

prefix/include/pythonversion,
exec_prefix/include/pythonversion

Recommended locations of the directories containing the include
files needed for developing Python extensions and embedding the
interpreter.

2.4 Miscellaneous

To easily use Python scripts on Unix, you need to make them executable, e.g. with

$ chmod +x script

and put an appropriate Shebang line at the top of the script. A good choice is usually

#!/usr/bin/env python3

which searches for the Python interpreter in the whole PATH. However, some Unices may not have the env command,
so you may need to hardcode /usr/bin/python3 as the interpreter path.

To use shell commands in your Python scripts, look at the subprocess module.

2.5 Editors

Vim and Emacs are excellent editors which support Python very well. For more information on how to code in Python
in these editors, look at:

12 Chapter 2. Using Python on Unix platforms

https://www.python.org/download/source/
https://docs.python.org/devguide/setup.html#getting-the-source-code
https://hg.python.org/cpython/file/3.4/README

Python Setup and Usage, Release 3.4.3

• http://www.vim.org/scripts/script.php?script_id=790

• http://sourceforge.net/projects/python-mode

Geany is an excellent IDE with support for a lot of languages. For more information, read: http://www.geany.org/

Komodo edit is another extremely good IDE. It also has support for a lot of languages. For more information, read
http://komodoide.com/.

2.5. Editors 13

http://www.vim.org/scripts/script.php?script_id=790
http://sourceforge.net/projects/python-mode
http://www.geany.org/
http://komodoide.com/

Python Setup and Usage, Release 3.4.3

14 Chapter 2. Using Python on Unix platforms

CHAPTER

THREE

USING PYTHON ON WINDOWS

This document aims to give an overview of Windows-specific behaviour you should know about when using Python
on Microsoft Windows.

3.1 Installing Python

Unlike most Unix systems and services, Windows does not require Python natively and thus does not pre-install a
version of Python. However, the CPython team has compiled Windows installers (MSI packages) with every release
for many years.

With ongoing development of Python, some platforms that used to be supported earlier are no longer supported (due
to the lack of users or developers). Check PEP 11 for details on all unsupported platforms.

• Windows CE is still supported.

• The Cygwin installer offers to install the Python interpreter as well (cf. Cygwin package source, Maintainer
releases)

See Python for Windows for detailed information about platforms with pre-compiled installers.

See also:

Python on XP “7 Minutes to “Hello World!”” by Richard Dooling, 2006

Installing on Windows in “Dive into Python: Python from novice to pro” by Mark Pilgrim, 2004, ISBN 1-59059-
356-1

For Windows users in “Installing Python” in “A Byte of Python” by Swaroop C H, 2003

3.2 Alternative bundles

Besides the standard CPython distribution, there are modified packages including additional functionality. The fol-
lowing is a list of popular versions and their key features:

ActivePython Installer with multi-platform compatibility, documentation, PyWin32

Enthought Python Distribution Popular modules (such as PyWin32) with their respective documentation, tool suite
for building extensible Python applications

Notice that these packages are likely to install older versions of Python.

15

https://www.python.org/download/releases/
http://www.python.org/dev/peps/pep-0011
http://pythonce.sourceforge.net/
http://cygwin.com/
ftp://ftp.uni-erlangen.de/pub/pc/gnuwin32/cygwin/mirrors/cygnus/release/python
http://www.tishler.net/jason/software/python/
http://www.tishler.net/jason/software/python/
https://www.python.org/download/windows/
http://www.richarddooling.com/index.php/2006/03/14/python-on-xp-7-minutes-to-hello-world/
http://www.diveintopython.net/installing_python/windows.html
http://www.diveintopython.net/
http://www.swaroopch.com/notes/python/#install_windows
http://www.swaroopch.com/notes/python/
http://www.activestate.com/activepython/
https://www.enthought.com/products/epd/

Python Setup and Usage, Release 3.4.3

3.3 Configuring Python

In order to run Python flawlessly, you might have to change certain environment settings in Windows.

3.3.1 Excursus: Setting environment variables

Windows has a built-in dialog for changing environment variables (following guide applies to XP classical view):
Right-click the icon for your machine (usually located on your Desktop and called “My Computer”) and choose
Properties there. Then, open the Advanced tab and click the Environment Variables button.

In short, your path is:

My Computer → Properties → Advanced → Environment Variables

In this dialog, you can add or modify User and System variables. To change System variables, you need non-restricted
access to your machine (i.e. Administrator rights).

Another way of adding variables to your environment is using the set command:

set PYTHONPATH=%PYTHONPATH%;C:\My_python_lib

To make this setting permanent, you could add the corresponding command line to your autoexec.bat. msconfig
is a graphical interface to this file.

Viewing environment variables can also be done more straight-forward: The command prompt will expand strings
wrapped into percent signs automatically:

echo %PATH%

Consult set /? for details on this behaviour.

See also:

http://support.microsoft.com/kb/100843 Environment variables in Windows NT

http://support.microsoft.com/kb/310519 How To Manage Environment Variables in Windows XP

http://www.chem.gla.ac.uk/~louis/software/faq/q1.html Setting Environment variables, Louis J. Farrugia

3.3.2 Finding the Python executable

Changed in version 3.3.

Besides using the automatically created start menu entry for the Python interpreter, you might want to start Python in
the command prompt. As of Python 3.3, the installer has an option to set that up for you.

At the “Customize Python 3.3” screen, an option called “Add python.exe to search path” can be enabled to have the
installer place your installation into the %PATH%. This allows you to type python to run the interpreter. Thus, you can
also execute your scripts with command line options, see Command line documentation.

If you don’t enable this option at install time, you can always re-run the installer to choose it.

The alternative is manually modifying the %PATH% using the directions in Excursus: Setting environment variables.
You need to set your %PATH% environment variable to include the directory of your Python distribution, delimited by
a semicolon from other entries. An example variable could look like this (assuming the first two entries are Windows’
default):

C:\WINDOWS\system32;C:\WINDOWS;C:\Python33

16 Chapter 3. Using Python on Windows

http://support.microsoft.com/kb/100843
http://support.microsoft.com/kb/310519
http://www.chem.gla.ac.uk/~louis/software/faq/q1.html

Python Setup and Usage, Release 3.4.3

3.3.3 Finding modules

Python usually stores its library (and thereby your site-packages folder) in the installation directory. So, if you had
installed Python to C:\Python\, the default library would reside in C:\Python\Lib\ and third-party modules
should be stored in C:\Python\Lib\site-packages\.

This is how sys.path is populated on Windows:

• An empty entry is added at the start, which corresponds to the current directory.

• If the environment variable PYTHONPATH exists, as described in Environment variables, its entries are added
next. Note that on Windows, paths in this variable must be separated by semicolons, to distinguish them from
the colon used in drive identifiers (C:\ etc.).

• Additional “application paths” can be added in the registry as subkeys of
\SOFTWARE\Python\PythonCore\version\PythonPath under both the HKEY_CURRENT_USER
and HKEY_LOCAL_MACHINE hives. Subkeys which have semicolon-delimited path strings as their default
value will cause each path to be added to sys.path. (Note that all known installers only use HKLM, so
HKCU is typically empty.)

• If the environment variable PYTHONHOME is set, it is assumed as “Python Home”. Otherwise, the path of the
main Python executable is used to locate a “landmark file” (Lib\os.py) to deduce the “Python Home”. If a
Python home is found, the relevant sub-directories added to sys.path (Lib, plat-win, etc) are based on
that folder. Otherwise, the core Python path is constructed from the PythonPath stored in the registry.

• If the Python Home cannot be located, no PYTHONPATH is specified in the environment, and no registry entries
can be found, a default path with relative entries is used (e.g. .\Lib;.\plat-win, etc).

The end result of all this is:

• When running python.exe, or any other .exe in the main Python directory (either an installed version, or
directly from the PCbuild directory), the core path is deduced, and the core paths in the registry are ignored.
Other “application paths” in the registry are always read.

• When Python is hosted in another .exe (different directory, embedded via COM, etc), the “Python Home” will
not be deduced, so the core path from the registry is used. Other “application paths” in the registry are always
read.

• If Python can’t find its home and there is no registry (eg, frozen .exe, some very strange installation setup) you
get a path with some default, but relative, paths.

3.3.4 Executing scripts

As of Python 3.3, Python includes a launcher which facilitates running Python scripts. See Python Launcher for
Windows for more information.

3.3.5 Executing scripts without the Python launcher

Without the Python launcher installed, Python scripts (files with the extension .py) will be executed by python.exe
by default. This executable opens a terminal, which stays open even if the program uses a GUI. If you do not want
this to happen, use the extension .pyw which will cause the script to be executed by pythonw.exe by default (both
executables are located in the top-level of your Python installation directory). This suppresses the terminal window on
startup.

You can also make all .py scripts execute with pythonw.exe, setting this through the usual facilities, for example
(might require administrative rights):

1. Launch a command prompt.

3.3. Configuring Python 17

Python Setup and Usage, Release 3.4.3

2. Associate the correct file group with .py scripts:

assoc .py=Python.File

3. Redirect all Python files to the new executable:

ftype Python.File=C:\Path\to\pythonw.exe "%1" %*

3.4 Python Launcher for Windows

New in version 3.3.

The Python launcher for Windows is a utility which aids in the location and execution of different Python versions. It
allows scripts (or the command-line) to indicate a preference for a specific Python version, and will locate and execute
that version.

3.4.1 Getting started

From the command-line

You should ensure the launcher is on your PATH - depending on how it was installed it may already be there, but check
just in case it is not.

From a command-prompt, execute the following command:

py

You should find that the latest version of Python 2.x you have installed is started - it can be exited as normal, and any
additional command-line arguments specified will be sent directly to Python.

If you have multiple versions of Python 2.x installed (e.g., 2.6 and 2.7) you will have noticed that Python 2.7 was
started - to launch Python 2.6, try the command:

py -2.6

If you have a Python 3.x installed, try the command:

py -3

You should find the latest version of Python 3.x starts.

From a script

Let’s create a test Python script - create a file called hello.py with the following contents

#! python
import sys
sys.stdout.write("hello from Python %s\n" % (sys.version,))

From the directory in which hello.py lives, execute the command:

py hello.py

You should notice the version number of your latest Python 2.x installation is printed. Now try changing the first line
to be:

#! python3

18 Chapter 3. Using Python on Windows

Python Setup and Usage, Release 3.4.3

Re-executing the command should now print the latest Python 3.x information. As with the above command-line
examples, you can specify a more explicit version qualifier. Assuming you have Python 2.6 installed, try changing the
first line to #! python2.6 and you should find the 2.6 version information printed.

From file associations

The launcher should have been associated with Python files (i.e. .py, .pyw, .pyc, .pyo files) when it was installed.
This means that when you double-click on one of these files from Windows explorer the launcher will be used, and
therefore you can use the same facilities described above to have the script specify the version which should be used.

The key benefit of this is that a single launcher can support multiple Python versions at the same time depending on
the contents of the first line.

3.4.2 Shebang Lines

If the first line of a script file starts with #!, it is known as a “shebang” line. Linux and other Unix like operating
systems have native support for such lines and are commonly used on such systems to indicate how a script should
be executed. This launcher allows the same facilities to be using with Python scripts on Windows and the examples
above demonstrate their use.

To allow shebang lines in Python scripts to be portable between Unix and Windows, this launcher supports a number
of ‘virtual’ commands to specify which interpreter to use. The supported virtual commands are:

• /usr/bin/env python

• /usr/bin/python

• /usr/local/bin/python

• python

For example, if the first line of your script starts with

#! /usr/bin/python

The default Python will be located and used. As many Python scripts written to work on Unix will already have this
line, you should find these scripts can be used by the launcher without modification. If you are writing a new script on
Windows which you hope will be useful on Unix, you should use one of the shebang lines starting with /usr.

3.4.3 Arguments in shebang lines

The shebang lines can also specify additional options to be passed to the Python interpreter. For example, if you have
a shebang line:

#! /usr/bin/python -v

Then Python will be started with the -v option

3.4.4 Customization

Customization via INI files

Two .ini files will be searched by the launcher - py.ini in the current user’s “application data”
directory (i.e. the directory returned by calling the Windows function SHGetFolderPath with
CSIDL_LOCAL_APPDATA) and py.ini in the same directory as the launcher. The same .ini files

3.4. Python Launcher for Windows 19

Python Setup and Usage, Release 3.4.3

are used for both the ‘console’ version of the launcher (i.e. py.exe) and for the ‘windows’ version (i.e.
pyw.exe)

Customization specified in the “application directory” will have precedence over the one next to the ex-
ecutable, so a user, who may not have write access to the .ini file next to the launcher, can override
commands in that global .ini file)

Customizing default Python versions

In some cases, a version qualifier can be included in a command to dictate which version of Python will be used by
the command. A version qualifier starts with a major version number and can optionally be followed by a period (‘.’)
and a minor version specifier. If the minor qualifier is specified, it may optionally be followed by “-32” to indicate the
32-bit implementation of that version be used.

For example, a shebang line of #!python has no version qualifier, while #!python3 has a version qualifier which
specifies only a major version.

If no version qualifiers are found in a command, the environment variable PY_PYTHON can be set to specify the
default version qualifier - the default value is “2”. Note this value could specify just a major version (e.g. “2”) or a
major.minor qualifier (e.g. “2.6”), or even major.minor-32.

If no minor version qualifiers are found, the environment variable PY_PYTHON{major} (where {major} is the
current major version qualifier as determined above) can be set to specify the full version. If no such option is found,
the launcher will enumerate the installed Python versions and use the latest minor release found for the major version,
which is likely, although not guaranteed, to be the most recently installed version in that family.

On 64-bit Windows with both 32-bit and 64-bit implementations of the same (major.minor) Python version installed,
the 64-bit version will always be preferred. This will be true for both 32-bit and 64-bit implementations of the launcher
- a 32-bit launcher will prefer to execute a 64-bit Python installation of the specified version if available. This is so the
behavior of the launcher can be predicted knowing only what versions are installed on the PC and without regard to the
order in which they were installed (i.e., without knowing whether a 32 or 64-bit version of Python and corresponding
launcher was installed last). As noted above, an optional “-32” suffix can be used on a version specifier to change this
behaviour.

Examples:

• If no relevant options are set, the commands python and python2 will use the latest Python 2.x version
installed and the command python3 will use the latest Python 3.x installed.

• The commands python3.1 and python2.7 will not consult any options at all as the versions are fully
specified.

• If PY_PYTHON=3, the commands python and python3 will both use the latest installed Python 3 version.

• If PY_PYTHON=3.1-32, the command python will use the 32-bit implementation of 3.1 whereas the com-
mand python3 will use the latest installed Python (PY_PYTHON was not considered at all as a major version
was specified.)

• If PY_PYTHON=3 and PY_PYTHON3=3.1, the commands python and python3 will both use specifically
3.1

In addition to environment variables, the same settings can be configured in the .INI file used by the launcher. The
section in the INI file is called [defaults] and the key name will be the same as the environment variables without
the leading PY_ prefix (and note that the key names in the INI file are case insensitive.) The contents of an environment
variable will override things specified in the INI file.

For example:

• Setting PY_PYTHON=3.1 is equivalent to the INI file containing:

20 Chapter 3. Using Python on Windows

Python Setup and Usage, Release 3.4.3

[defaults]
python=3.1

• Setting PY_PYTHON=3 and PY_PYTHON3=3.1 is equivalent to the INI file containing:

[defaults]
python=3
python3=3.1

3.4.5 Diagnostics

If an environment variable PYLAUNCH_DEBUG is set (to any value), the launcher will print diagnostic information to
stderr (i.e. to the console). While this information manages to be simultaneously verbose and terse, it should allow
you to see what versions of Python were located, why a particular version was chosen and the exact command-line
used to execute the target Python.

3.5 Additional modules

Even though Python aims to be portable among all platforms, there are features that are unique to Windows. A couple
of modules, both in the standard library and external, and snippets exist to use these features.

The Windows-specific standard modules are documented in mswin-specific-services.

3.5.1 PyWin32

The PyWin32 module by Mark Hammond is a collection of modules for advanced Windows-specific support. This
includes utilities for:

• Component Object Model (COM)

• Win32 API calls

• Registry

• Event log

• Microsoft Foundation Classes (MFC) user interfaces

PythonWin is a sample MFC application shipped with PyWin32. It is an embeddable IDE with a built-in debugger.

See also:

Win32 How Do I...? by Tim Golden

Python and COM by David and Paul Boddie

3.5.2 cx_Freeze

cx_Freeze is a distutils extension (see extending-distutils) which wraps Python scripts into executable Windows
programs (*.exe files). When you have done this, you can distribute your application without requiring your users
to install Python.

3.5. Additional modules 21

http://python.net/crew/mhammond/win32/
http://www.microsoft.com/com/
http://msdn.microsoft.com/en-us/library/fe1cf721%28VS.80%29.aspx
http://web.archive.org/web/20060524042422/https://www.python.org/windows/pythonwin/
http://timgolden.me.uk/python/win32_how_do_i.html
http://www.boddie.org.uk/python/COM.html
http://cx-freeze.sourceforge.net/

Python Setup and Usage, Release 3.4.3

3.5.3 WConio

Since Python’s advanced terminal handling layer, curses, is restricted to Unix-like systems, there is a library exclu-
sive to Windows as well: Windows Console I/O for Python.

WConio is a wrapper for Turbo-C’s CONIO.H, used to create text user interfaces.

3.6 Compiling Python on Windows

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the
latest release’s source or just grab a fresh checkout.

The source tree contains a build solution and project files for Microsoft Visual C++, which is the compiler used to
build the official Python releases. View the readme.txt in their respective directories:

Directory MSVC version Visual Studio version
PC/VS9.0/ 9.0 2008
PCbuild/ 10.0 2010

Note that any build directories within the PC directory are not necessarily fully supported. The PCbuild directory
contains the files for the compiler used to build the official release.

Check PCbuild/readme.txt for general information on the build process.

For extension modules, consult building-on-windows.

See also:

Python + Windows + distutils + SWIG + gcc MinGW or “Creating Python extensions in C/C++ with SWIG and
compiling them with MinGW gcc under Windows” or “Installing Python extension with distutils and without
Microsoft Visual C++” by Sébastien Sauvage, 2003

MingW – Python extensions by Trent Apted et al, 2007

3.7 Other resources

See also:

Python Programming On Win32 “Help for Windows Programmers” by Mark Hammond and Andy Robinson,
O’Reilly Media, 2000, ISBN 1-56592-621-8

A Python for Windows Tutorial by Amanda Birmingham, 2004

PEP 397 - Python launcher for Windows The proposal for the launcher to be included in the Python distribution.

22 Chapter 3. Using Python on Windows

http://newcenturycomputers.net/projects/wconio.html
https://www.python.org/download/source/
https://docs.python.org/devguide/setup.html#getting-the-source-code
http://sebsauvage.net/python/mingw.html
http://oldwiki.mingw.org/index.php/Python%20extensions
http://shop.oreilly.com/product/9781565926219.do
http://www.imladris.com/Scripts/PythonForWindows.html
http://www.python.org/dev/peps/pep-0397

CHAPTER

FOUR

USING PYTHON ON A MACINTOSH

Author Bob Savage <bobsavage@mac.com>

Python on a Macintosh running Mac OS X is in principle very similar to Python on any other Unix platform, but there
are a number of additional features such as the IDE and the Package Manager that are worth pointing out.

4.1 Getting and Installing MacPython

Mac OS X 10.8 comes with Python 2.7 pre-installed by Apple. If you wish, you are invited to install the most recent
version of Python 3 from the Python website (https://www.python.org). A current “universal binary” build of Python,
which runs natively on the Mac’s new Intel and legacy PPC CPU’s, is available there.

What you get after installing is a number of things:

• A MacPython 3.4 folder in your Applications folder. In here you find IDLE, the development envi-
ronment that is a standard part of official Python distributions; PythonLauncher, which handles double-clicking
Python scripts from the Finder; and the “Build Applet” tool, which allows you to package Python scripts as
standalone applications on your system.

• A framework /Library/Frameworks/Python.framework, which includes the Python executable and
libraries. The installer adds this location to your shell path. To uninstall MacPython, you can simply remove
these three things. A symlink to the Python executable is placed in /usr/local/bin/.

The Apple-provided build of Python is installed in /System/Library/Frameworks/Python.framework
and /usr/bin/python, respectively. You should never modify or delete these, as they are Apple-controlled and
are used by Apple- or third-party software. Remember that if you choose to install a newer Python version from
python.org, you will have two different but functional Python installations on your computer, so it will be important
that your paths and usages are consistent with what you want to do.

IDLE includes a help menu that allows you to access Python documentation. If you are completely new to Python you
should start reading the tutorial introduction in that document.

If you are familiar with Python on other Unix platforms you should read the section on running Python scripts from
the Unix shell.

4.1.1 How to run a Python script

Your best way to get started with Python on Mac OS X is through the IDLE integrated development environment, see
section The IDE and use the Help menu when the IDE is running.

If you want to run Python scripts from the Terminal window command line or from the Finder you first
need an editor to create your script. Mac OS X comes with a number of standard Unix command line edi-
tors, vim and emacs among them. If you want a more Mac-like editor, BBEdit or TextWrangler from Bare

23

mailto:bobsavage@mac.com
https://www.python.org

Python Setup and Usage, Release 3.4.3

Bones Software (see http://www.barebones.com/products/bbedit/index.html) are good choices, as is TextMate (see
http://macromates.com/). Other editors include Gvim (http://macvim.org) and Aquamacs (http://aquamacs.org/).

To run your script from the Terminal window you must make sure that /usr/local/bin is in your shell search
path.

To run your script from the Finder you have two options:

• Drag it to PythonLauncher

• Select PythonLauncher as the default application to open your script (or any .py script) through the finder Info
window and double-click it. PythonLauncher has various preferences to control how your script is launched.
Option-dragging allows you to change these for one invocation, or use its Preferences menu to change things
globally.

4.1.2 Running scripts with a GUI

With older versions of Python, there is one Mac OS X quirk that you need to be aware of: programs that talk to the
Aqua window manager (in other words, anything that has a GUI) need to be run in a special way. Use pythonw instead
of python to start such scripts.

With Python 3.4, you can use either python or pythonw.

4.1.3 Configuration

Python on OS X honors all standard Unix environment variables such as PYTHONPATH, but setting these variables for
programs started from the Finder is non-standard as the Finder does not read your .profile or .cshrc at startup.
You need to create a file ~ /.MacOSX/environment.plist. See Apple’s Technical Document QA1067 for
details.

For more information on installation Python packages in MacPython, see section Installing Additional Python Pack-
ages.

4.2 The IDE

MacPython ships with the standard IDLE development environment. A good introduction to using IDLE can be found
at https://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html.

4.3 Installing Additional Python Packages

There are several methods to install additional Python packages:

• Packages can be installed via the standard Python distutils mode (python setup.py install).

• Many packages can also be installed via the setuptools extension or pip wrapper, see https://pip.pypa.io/.

4.4 GUI Programming on the Mac

There are several options for building GUI applications on the Mac with Python.

PyObjC is a Python binding to Apple’s Objective-C/Cocoa framework, which is the foundation of most modern Mac
development. Information on PyObjC is available from https://pythonhosted.org/pyobjc/.

24 Chapter 4. Using Python on a Macintosh

http://www.barebones.com/products/bbedit/index.html
http://macromates.com/
http://macvim.org
http://aquamacs.org/
https://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html
https://pip.pypa.io/
https://pythonhosted.org/pyobjc/

Python Setup and Usage, Release 3.4.3

The standard Python GUI toolkit is tkinter, based on the cross-platform Tk toolkit (http://www.tcl.tk). An Aqua-
native version of Tk is bundled with OS X by Apple, and the latest version can be downloaded and installed from
http://www.activestate.com; it can also be built from source.

wxPython is another popular cross-platform GUI toolkit that runs natively on Mac OS X. Packages and documentation
are available from http://www.wxpython.org.

PyQt is another popular cross-platform GUI toolkit that runs natively on Mac OS X. More information can be found
at http://www.riverbankcomputing.co.uk/software/pyqt/intro.

4.5 Distributing Python Applications on the Mac

The “Build Applet” tool that is placed in the MacPython 3.4 folder is fine for packaging small Python scripts on your
own machine to run as a standard Mac application. This tool, however, is not robust enough to distribute Python
applications to other users.

The standard tool for deploying standalone Python applications on the Mac is py2app. More information on installing
and using py2app can be found at http://undefined.org/python/#py2app.

4.6 Other Resources

The MacPython mailing list is an excellent support resource for Python users and developers on the Mac:

https://www.python.org/community/sigs/current/pythonmac-sig/

Another useful resource is the MacPython wiki:

https://wiki.python.org/moin/MacPython

4.5. Distributing Python Applications on the Mac 25

http://www.tcl.tk
http://www.activestate.com
http://www.wxpython.org
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://undefined.org/python/#py2app
https://www.python.org/community/sigs/current/pythonmac-sig/
https://wiki.python.org/moin/MacPython

Python Setup and Usage, Release 3.4.3

26 Chapter 4. Using Python on a Macintosh

CHAPTER

FIVE

ADDITIONAL TOOLS AND SCRIPTS

5.1 pyvenv - Creating virtual environments

Creation of virtual environments is done by executing the pyvenv script:

pyvenv /path/to/new/virtual/environment

Running this command creates the target directory (creating any parent directories that don’t exist already) and places
a pyvenv.cfg file in it with a home key pointing to the Python installation the command was run from. It also
creates a bin (or Scripts on Windows) subdirectory containing a copy of the python binary (or binaries, in
the case of Windows). It also creates an (initially empty) lib/pythonX.Y/site-packages subdirectory (on
Windows, this is Lib\site-packages).

See also:

Python Packaging User Guide: Creating and using virtual environments

On Windows, you may have to invoke the pyvenv script as follows, if you don’t have the relevant PATH and
PATHEXT settings:

c:\Temp>c:\Python34\python c:\Python34\Tools\Scripts\pyvenv.py myenv

or equivalently:

c:\Temp>c:\Python34\python -m venv myenv

The command, if run with -h, will show the available options:

usage: venv [-h] [--system-site-packages] [--symlinks] [--clear]
[--upgrade] [--without-pip] ENV_DIR [ENV_DIR ...]

Creates virtual Python environments in one or more target directories.

positional arguments:
ENV_DIR A directory to create the environment in.

optional arguments:
-h, --help show this help message and exit
--system-site-packages Give access to the global site-packages dir to the

virtual environment.
--symlinks Try to use symlinks rather than copies, when symlinks

are not the default for the platform.
--copies Try to use copies rather than symlinks, even when

symlinks are the default for the platform.
--clear Delete the environment directory if it already exists.

If not specified and the directory exists, an error is

27

https://packaging.python.org/en/latest/installing.html#virtual-environments

Python Setup and Usage, Release 3.4.3

raised.
--upgrade Upgrade the environment directory to use this version

of Python, assuming Python has been upgraded in-place.
--without-pip Skips installing or upgrading pip in the virtual

environment (pip is bootstrapped by default)

Depending on how the venv functionality has been invoked, the usage message may vary slightly, e.g. referencing
pyvenv rather than venv.

Changed in version 3.4: Installs pip by default, added the --without-pip and --copies options

Changed in version 3.4: In earlier versions, if the target directory already existed, an error was raised, unless the
--clear or --upgrade option was provided. Now, if an existing directory is specified, its contents are removed
and the directory is processed as if it had been newly created.

The created pyvenv.cfg file also includes the include-system-site-packages key, set to true if venv
is run with the --system-site-packages option, false otherwise.

Unless the --without-pip option is given, ensurepip will be invoked to bootstrap pip into the virtual envi-
ronment.

Multiple paths can be given to pyvenv, in which case an identical virtualenv will be created, according to the given
options, at each provided path.

Once a venv has been created, it can be “activated” using a script in the venv’s binary directory. The invocation of the
script is platform-specific:

Platform Shell Command to activate virtual environment
Posix bash/zsh $ source <venv>/bin/activate

fish $. <venv>/bin/activate.fish
csh/tcsh $ source <venv>/bin/activate.csh

Windows cmd.exe C:> <venv>/Scripts/activate.bat
PowerShell PS C:> <venv>/Scripts/Activate.ps1

You don’t specifically need to activate an environment; activation just prepends the venv’s binary directory to your
path, so that “python” invokes the venv’s Python interpreter and you can run installed scripts without having to use
their full path. However, all scripts installed in a venv should be runnable without activating it, and run with the venv’s
Python automatically.

You can deactivate a venv by typing “deactivate” in your shell. The exact mechanism is platform-specific: for exam-
ple, the Bash activation script defines a “deactivate” function, whereas on Windows there are separate scripts called
deactivate.bat and Deactivate.ps1 which are installed when the venv is created.

New in version 3.4: fish and csh activation scripts.

28 Chapter 5. Additional Tools and Scripts

APPENDIX

A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

... The default Python prompt of the interactive shell when entering code for an indented code block or within a
pair of matching left and right delimiters (parentheses, square brackets or curly braces).

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which
can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as lib2to3; a standalone entry point is provided as
Tools/scripts/2to3. See 2to3-reference.

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces when
other techniques like hasattr() would be clumsy or subtly wrong (for example with magic methods).
ABCs introduce virtual subclasses, which are classes that don’t inherit from a class but are still recognized
by isinstance() and issubclass(); see the abc module documentation. Python comes with many
built-in ABCs for data structures (in the collections.abc module), numbers (in the numbers module),
streams (in the io module), import finders and loaders (in the importlib.abc module). You can create your
own ABCs with the abc module.

argument A value passed to a function (or method) when calling the function. There are two kinds of argument:

• keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a
value in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in the following
calls to complex():

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

• positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3
and 5 are both positional arguments in the following calls:

complex(3, 5)
complex(*(3, 5))

Arguments are assigned to the named local variables in a function body. See the calls section for the rules
governing this assignment. Syntactically, any expression can be used to represent an argument; the evaluated
value is assigned to the local variable.

See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters,
and PEP 362.

attribute A value associated with an object which is referenced by name using dotted expressions. For example, if
an object o has an attribute a it would be referenced as o.a.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

29

http://www.python.org/dev/peps/pep-0362
https://www.python.org/~guido/

Python Setup and Usage, Release 3.4.3

binary file A file object able to read and write bytes-like objects.

See also:

A text file reads and writes str objects.

bytes-like object An object that supports the bufferobjects, like bytes, bytearray or memoryview. Bytes-like
objects can be used for various operations that expect binary data, such as compression, saving to a binary file
or sending over a socket. Some operations need the binary data to be mutable, in which case not all bytes-like
objects can apply.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the
CPython interpreter. The bytecode is also cached in .pyc and .pyo files so that executing the same file is
faster the second time (recompilation from source to bytecode can be avoided). This “intermediate language” is
said to run on a virtual machine that executes the machine code corresponding to each bytecode. Do note that
bytecodes are not expected to work between different Python virtual machines, nor to be stable between Python
releases.

A list of bytecode instructions can be found in the documentation for the dis module.

class A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

coercion The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For example, int(3.15) converts the floating point number to the integer 3, but
in 3+4.5, each argument is of a different type (one int, one float), and both must be converted to the same type
before they can be added or it will raise a TypeError. Without coercion, all arguments of even compatible
types would have to be normalized to the same value by the programmer, e.g., float(3)+4.5 rather than just
3+4.5.

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of
a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root
of -1), often written i in mathematics or j in engineering. Python has built-in support for complex numbers,
which are written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get
access to complex equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced
mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a with statement by defining __enter__()
and __exit__() methods. See PEP 343.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The term
“CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod() and staticmethod().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equiva-
lent:

def f(...):
...

f = staticmethod(f)

@staticmethod
def f(...):

...

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions and class definitions for more about decorators.

30 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0343
https://www.python.org

Python Setup and Usage, Release 3.4.3

descriptor Any object which defines the methods __get__(), __set__(), or __delete__(). When a class
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.

For more information about descriptors’ methods, see descriptors.

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__() and __eq__() methods. Called a hash in Perl.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right interface;
instead, the method or attribute is simply called or used (“If it looks like a duck and quacks like a duck, it must
be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility
by allowing polymorphic substitution. Duck-typing avoids tests using type() or isinstance(). (Note,
however, that duck-typing can be complemented with abstract base classes.) Instead, it typically employs
hasattr() tests or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence
of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is
characterized by the presence of many try and except statements. The technique contrasts with the LBYL
style common to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements
which cannot be used as expressions, such as if. Assignments are also statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.

file object An object exposing a file-oriented API (with methods such as read() or write()) to an underlying
resource. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another
type of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their
interfaces are defined in the io module. The canonical way to create a file object is by using the open()
function.

file-like object A synonym for file object.

finder An object that tries to find the loader for a module. It must implement either a method named
find_loader() or a method named find_module(). See PEP 302 and PEP 420 for details and
importlib.abc.Finder for an abstract base class.

floor division Mathematical division that rounds down to nearest integer. The floor division operator is //. For
example, the expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division. Note
that (-11) // 4 is -3 because that is -2.75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. See also parameter, method, and the function section.

function annotation An arbitrary metadata value associated with a function parameter or return value. Its syntax is
explained in section function. Annotations may be accessed via the __annotations__ special attribute of a
function object.

31

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0420
http://www.python.org/dev/peps/pep-0238

Python Setup and Usage, Release 3.4.3

Python itself does not assign any particular meaning to function annotations. They are intended to be interpreted
by third-party libraries or tools. See PEP 3107, which describes some of their potential uses.

__future__ A pseudo-module which programmers can use to enable new language features which are not compatible
with the current interpreter.

By importing the __future__ module and evaluating its variables, you can see when a new feature was first
added to the language and when it becomes the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator A function which returns an iterator. It looks like a normal function except that it contains yield
statements for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next() function. Each yield temporarily suspends processing, remembering the location execution state
(including local variables and pending try-statements). When the generator resumes, it picks-up where it left-off
(in contrast to functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a for
expression defining a loop variable, range, and an optional if expression. The combined expression generates
values for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

generic function A function composed of multiple functions implementing the same operation for different types.
Which implementation should be used during a call is determined by the dispatch algorithm.

See also the single dispatch glossary entry, the functools.singledispatch() decorator, and PEP 443.

GIL See global interpreter lock.

global interpreter lock The mechanism used by the CPython interpreter to assure that only one thread executes
Python bytecode at a time. This simplifies the CPython implementation by making the object model (including
critical built-in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter
makes it easier for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by
multi-processor machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when
doing I/O.

Past efforts to create a “free-threaded” interpreter (one which locks shared data at a much finer granularity)
have not been successful because performance suffered in the common single-processor case. It is believed
that overcoming this performance issue would make the implementation much more complicated and therefore
costlier to maintain.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__() method), and can be compared to other objects (it needs an __eq__() method). Hashable
objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionar-
ies) are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal
(except with themselves), and their hash value is derived from their id().

32 Appendix A. Glossary

http://www.python.org/dev/peps/pep-3107
http://www.python.org/dev/peps/pep-0443

Python Setup and Usage, Release 3.4.3

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment which
ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

import path A list of locations (or path entries) that are searched by the path based finder for modules to import.
During import, this list of locations usually comes from sys.path, but for subpackages it may also come from
the parent package’s __path__ attribute.

importing The process by which Python code in one module is made available to Python code in another module.

importer An object that both finds and loads a module; both a finder and loader object.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the in-
terpreter prompt, immediately execute them and see their results. Just launch python with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or
inspect modules and packages (remember help(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry
because of the presence of the bytecode compiler. This means that source files can be run directly without explic-
itly creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. See also interactive.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types
(such as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any
classes you define with an __iter__() or __getitem__() method. Iterables can be used in a for loop
and in many other places where a sequence is needed (zip(), map(), ...). When an iterable object is passed
as an argument to the built-in function iter(), it returns an iterator for the object. This iterator is good for one
pass over the set of values. When using iterables, it is usually not necessary to call iter() or deal with iterator
objects yourself. The for statement does that automatically for you, creating a temporary unnamed variable to
hold the iterator for the duration of the loop. See also iterator, sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s __next__() method (or passing
it to the built-in function next()) return successive items in the stream. When no more data are available
a StopIteration exception is raised instead. At this point, the iterator object is exhausted and any fur-
ther calls to its __next__() method just raise StopIteration again. Iterators are required to have an
__iter__() method that returns the iterator object itself so every iterator is also iterable and may be used in
most places where other iterables are accepted. One notable exception is code which attempts multiple iteration
passes. A container object (such as a list) produces a fresh new iterator each time you pass it to the iter()
function or use it in a for loop. Attempting this with an iterator will just return the same exhausted iterator
object used in the previous iteration pass, making it appear like an empty container.

More information can be found in typeiter.

key function A key function or collation function is a callable that returns a value used for sorting or ordering. For
example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min(), max(), sorted(), list.sort(), heapq.nsmallest(), heapq.nlargest(), and
itertools.groupby().

There are several ways to create a key function. For example. the str.lower() method can serve as a key
function for case insensitive sorts. Alternatively, an ad-hoc key function can be built from a lambda expression
such as lambda r: (r[0], r[2]). Also, the operator module provides three key function construc-
tors: attrgetter(), itemgetter(), and methodcaller(). See the Sorting HOW TO for examples
of how to create and use key functions.

keyword argument See argument.

33

Python Setup and Usage, Release 3.4.3

lambda An anonymous inline function consisting of a single expression which is evaluated when the function is
called. The syntax to create a lambda function is lambda [arguments]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with the EAFP approach and is characterized by the presence of many if statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between “the look-
ing” and “the leaping”. For example, the code, if key in mapping: return mapping[key] can
fail if another thread removes key from mapping after the test, but before the lookup. This issue can be solved
with locks or by using the EAFP approach.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements are O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the
results. result = [’{:#04x}’.format(x) for x in range(256) if x % 2 == 0] gener-
ates a list of strings containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional.
If omitted, all elements in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is typically
returned by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

mapping A container object that supports arbitrary key lookups and implements the methods spec-
ified in the Mapping or MutableMapping abstract base classes. Examples include dict,
collections.defaultdict, collections.OrderedDict and collections.Counter.

meta path finder A finder returned by a search of sys.meta_path. Meta path finders are related to, but different
from path entry finders.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

More information can be found in metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its first argument (which is usually called self). See function and nested
scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member
during lookup. See The Python 2.3 Method Resolution Order.

module An object that serves as an organizational unit of Python code. Modules have a namespace containing
arbitrary Python objects. Modules are loaded into Python by the process of importing.

See also package.

module spec A namespace containing the import-related information used to load a module.

MRO See method resolution order.

mutable Mutable objects can change their value but keep their id(). See also immutable.

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for example,
time.localtime() returns a tuple-like object where the year is accessible either with an index such as
t[0] or with a named attribute like t.tm_year).

A named tuple can be a built-in type such as time.struct_time, or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function

34 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

Python Setup and Usage, Release 3.4.3

collections.namedtuple(). The latter approach automatically provides extra features such as a self-
documenting representation like Employee(name=’jones’, title=’programmer’).

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support
modularity by preventing naming conflicts. For instance, the functions builtins.open and os.open()
are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear
which module implements a function. For instance, writing random.seed() or itertools.islice()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

namespace package A PEP 420 package which serves only as a container for subpackages. Namespace packages
may have no physical representation, and specifically are not like a regular package because they have no
__init__.py file.

See also module.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes by default work only for
reference and not for assignment. Local variables both read and write in the innermost scope. Likewise, global
variables read and write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class Old name for the flavor of classes now used for all class objects. In earlier Python versions,
only new-style classes could use Python’s newer, versatile features like __slots__, descriptors, properties,
__getattribute__(), class methods, and static methods.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

package A Python module which can contain submodules or recursively, subpackages. Technically, a package is a
Python module with an __path__ attribute.

See also regular package and namespace package.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases, argu-
ments) that the function can accept. There are five kinds of parameter:

• positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argu-
ment. This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None): ...

• positional-only: specifies an argument that can be supplied only by position. Python has no syntax for
defining positional-only parameters. However, some built-in functions have positional-only parameters
(e.g. abs()).

• keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters can
be defined by including a single var-positional parameter or bare * in the parameter list of the function
definition before them, for example kw_only1 and kw_only2 in the following:

def func(arg, *, kw_only1, kw_only2): ...

• var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition
to any positional arguments already accepted by other parameters). Such a parameter can be defined by
prepending the parameter name with *, for example args in the following:

def func(*args, **kwargs): ...

• var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional argu-
ments.

35

http://www.python.org/dev/peps/pep-0420

Python Setup and Usage, Release 3.4.3

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters,
the inspect.Parameter class, the function section, and PEP 362.

path entry A single location on the import path which the path based finder consults to find modules for importing.

path entry finder A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows how
to locate modules given a path entry.

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how to find
modules on a specific path entry.

path based finder One of the default meta path finders which searches an import path for modules.

portion A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as
defined in PEP 420.

positional argument See argument.

provisional API A provisional API is one which has been deliberately excluded from the standard library’s back-
wards compatibility guarantees. While major changes to such interfaces are not expected, as long as they are
marked provisional, backwards incompatible changes (up to and including removal of the interface) may occur
if deemed necessary by core developers. Such changes will not be made gratuitously – they will occur only if
serious fundamental flaws are uncovered that were missed prior to the inclusion of the API.

Even for provisional APIs, backwards incompatible changes are seen as a “solution of last resort” - every attempt
will still be made to find a backwards compatible resolution to any identified problems.

This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

provisional package See provisional API.

Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something
in the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather
than implementing code using concepts common to other languages. For example, a common idiom in Python
is to loop over all elements of an iterable using a for statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print(food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print(piece)

qualified name A dotted name showing the “path” from a module’s global scope to a class, function or method
defined in that module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the
same as the object’s name:

>>> class C:
... class D:
... def meth(self):
... pass
...
>>> C.__qualname__
'C'
>>> C.D.__qualname__
'C.D'

36 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0362
http://www.python.org/dev/peps/pep-0420
http://www.python.org/dev/peps/pep-0411
http://www.python.org/dev/peps/pep-3155

Python Setup and Usage, Release 3.4.3

>>> C.D.meth.__qualname__
'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including
any parent packages, e.g. email.mime.text:

>>> import email.mime.text
>>> email.mime.text.__name__
'email.mime.text'

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sys module defines a getrefcount() function that programmers can call to return
the reference count for a particular object.

regular package A traditional package, such as a directory containing an __init__.py file.

See also namespace package.

__slots__ A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminat-
ing instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for
rare cases where there are large numbers of instances in a memory-critical application.

sequence An iterable which supports efficient element access using integer indices via the __getitem__() special
method and defines a __len__()method that returns the length of the sequence. Some built-in sequence types
are list, str, tuple, and bytes. Note that dict also supports __getitem__() and __len__(), but
is considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than
integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes be-
yond just __getitem__() and __len__(), adding count(), index(), __contains__(), and
__reversed__(). Types that implement this expanded interface can be registered explicitly using
register().

single dispatch A form of generic function dispatch where the implementation is chosen based on the type of a single
argument.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, []
with colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket
(subscript) notation uses slice objects internally.

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addition.
Such methods have names starting and ending with double underscores. Special methods are documented in
specialnames.

statement A statement is part of a suite (a “block” of code). A statement is either an expression or one of several
constructs with a keyword, such as if, while or for.

struct sequence A tuple with named elements. Struct sequences expose an interface similar to named tuple in that
elements can either be accessed either by index or as an attribute. However, they do not have any of the named
tuple methods like _make() or _asdict(). Examples of struct sequences include sys.float_info and
the return value of os.stat().

text encoding A codec which encodes Unicode strings to bytes.

text file A file object able to read and write str objects. Often, a text file actually accesses a byte-oriented datastream
and handles the text encoding automatically.

See also:

A binary file reads and write bytes objects.

37

Python Setup and Usage, Release 3.4.3

triple-quoted string A string which is bound by three instances of either a quotation mark (”) or an apostrophe
(‘). While they don’t provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they can
span multiple lines without the use of the continuation character, making them especially useful when writing
docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

universal newlines A manner of interpreting text streams in which all of the following are recognized as ending a
line: the Unix end-of-line convention ’\n’, the Windows convention ’\r\n’, and the old Macintosh conven-
tion ’\r’. See PEP 278 and PEP 3116, as well as bytes.splitlines() for an additional use.

view The objects returned from dict.keys(), dict.values(), and dict.items() are called dictionary
views. They are lazy sequences that will see changes in the underlying dictionary. To force the dictionary view
to become a full list use list(dictview). See dict-views.

virtual environment A cooperatively isolated runtime environment that allows Python users and applications to
install and upgrade Python distribution packages without interfering with the behaviour of other Python appli-
cations running on the same system.

See also pyvenv - Creating virtual environments

virtual machine A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted
by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing “import this” at the interactive prompt.

38 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0278
http://www.python.org/dev/peps/pep-3116

APPENDIX

B

ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written
for the Python documentation.

Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If you want
to contribute, please take a look at the reporting-bugs page for information on how to do so. New volunteers are always
welcome!

Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;

• the Docutils project for creating reStructuredText and the Docutils suite;

• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python Documentation

Many people have contributed to the Python language, the Python standard library, and the Python documentation.
See Misc/ACKS in the Python source distribution for a partial list of contributors.

It is only with the input and contributions of the Python community that Python has such wonderful documentation –
Thank You!

39

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://hg.python.org/cpython/file/3.4/Misc/ACKS

Python Setup and Usage, Release 3.4.3

40 Appendix B. About these documents

APPENDIX

C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation
is a sponsoring member of the PSF.

All Python releases are Open Source (see http://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 and above 2.1.1 2001-now PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 3.4.3

41

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
https://www.python.org/psf/
http://opensource.org/

Python Setup and Usage, Release 3.4.3

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or Or-
ganization (“Licensee”) accessing and otherwise using Python 3.4.3 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 3.4.3 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2015 Python Software
Foundation; All Rights Reserved” are retained in Python 3.4.3 alone or in any derivative version prepared by
Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 3.4.3 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 3.4.3.

4. PSF is making Python 3.4.3 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 3.4.3 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.4.3 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 3.4.3, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint
venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.

8. By copying, installing or otherwise using Python 3.4.3, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,
Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee
a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

42 Appendix C. History and License

Python Setup and Usage, Release 3.4.3

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-
fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an office
at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Licensee”)
accessing and otherwise using Python 1.6.1 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided, however, that
CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyright © 1995-2001 Corporation for
National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement, Licensee may substitute the
following text (omitting the quotes): “Python 1.6.1 is made available subject to the terms and conditions in
CNRI’s License Agreement. This Agreement together with Python 1.6.1 may be located on the Internet using
the following unique, persistent identifier (known as a handle): 1895.22/1013. This Agreement may also be
obtained from a proxy server on the Internet using the following URL: http://hdl.handle.net/1895.22/1013.”

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, including
without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply, by the
law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstanding the
foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable material that
was previously distributed under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or with respect to Paragraphs 4, 5,
and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between CNRI and Licensee. This License Agreement does not grant
permission to use CNRI trademarks or trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python 1.6.1,
Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT

C.2. Terms and conditions for accessing or otherwise using Python 43

http://www.pythonlabs.com/logos.html
http://hdl.handle.net/1895.22/1013

Python Setup and Usage, Release 3.4.3

CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated
in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-
mat/MT/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

44 Appendix C. History and License

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Python Setup and Usage, Release 3.4.3

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

/ Copyright (c) 1996. \

C.3. Licenses and Acknowledgements for Incorporated Software 45

http://www.wide.ad.jp/

Python Setup and Usage, Release 3.4.3

| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /

C.3.4 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR

46 Appendix C. History and License

Python Setup and Usage, Release 3.4.3

CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.5 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.6 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

C.3. Licenses and Acknowledgements for Incorporated Software 47

Python Setup and Usage, Release 3.4.3

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.7 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.8 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in

48 Appendix C. History and License

Python Setup and Usage, Release 3.4.3

all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.9 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.10 Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

C.3. Licenses and Acknowledgements for Incorporated Software 49

Python Setup and Usage, Release 3.4.3

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.11 SipHash24

The file Python/pyhash.c contains Marek Majkowski’ implementation of Dan Bernstein’s SipHash24 algorithm.
The contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.12 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from
strings, is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/.
The original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**
*
* The author of this software is David M. Gay.

*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

50 Appendix C. History and License

http://www.netlib.org/fp/

Python Setup and Usage, Release 3.4.3

*
* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice

* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*
***/

C.3.13 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available
by the operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of the
OpenSSL libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* ==

* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

*
* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

*
* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in

* the documentation and/or other materials provided with the

* distribution.

*
* 3. All advertising materials mentioning features or use of this

* software must display the following acknowledgment:

* "This product includes software developed by the OpenSSL Project

* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to

* endorse or promote products derived from this software without

C.3. Licenses and Acknowledgements for Incorporated Software 51

Python Setup and Usage, Release 3.4.3

* prior written permission. For written permission, please contact

* openssl-core@openssl.org.

*
* 5. Products derived from this software may not be called "OpenSSL"

* nor may "OpenSSL" appear in their names without prior written

* permission of the OpenSSL Project.

*
* 6. Redistributions of any form whatsoever must retain the following

* acknowledgment:

* "This product includes software developed by the OpenSSL Project

* for use in the OpenSSL Toolkit (http://www.openssl.org/)"

*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY

* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR

* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

* OF THE POSSIBILITY OF SUCH DAMAGE.

* ==

*
* This product includes cryptographic software written by Eric Young

* (eay@cryptsoft.com). This product includes software written by Tim

* Hudson (tjh@cryptsoft.com).

*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

* All rights reserved.

*
* This package is an SSL implementation written

* by Eric Young (eay@cryptsoft.com).

* The implementation was written so as to conform with Netscapes SSL.

*
* This library is free for commercial and non-commercial use as long as

* the following conditions are aheared to. The following conditions

* apply to all code found in this distribution, be it the RC4, RSA,

* lhash, DES, etc., code; not just the SSL code. The SSL documentation

* included with this distribution is covered by the same copyright terms

* except that the holder is Tim Hudson (tjh@cryptsoft.com).

*
* Copyright remains Eric Young's, and as such any Copyright notices in

* the code are not to be removed.

* If this package is used in a product, Eric Young should be given attribution

* as the author of the parts of the library used.

* This can be in the form of a textual message at program startup or

52 Appendix C. History and License

Python Setup and Usage, Release 3.4.3

* in documentation (online or textual) provided with the package.

*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software

* must display the following acknowledgement:

* "This product includes cryptographic software written by

* Eric Young (eay@cryptsoft.com)"

* The word 'cryptographic' can be left out if the rouines from the library

* being used are not cryptographic related :-).

* 4. If you include any Windows specific code (or a derivative thereof) from

* the apps directory (application code) you must include an acknowledgement:

* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

*
* The licence and distribution terms for any publically available version or

* derivative of this code cannot be changed. i.e. this code cannot simply be

* copied and put under another distribution licence

* [including the GNU Public Licence.]

*/

C.3.14 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

C.3. Licenses and Acknowledgements for Incorporated Software 53

Python Setup and Usage, Release 3.4.3

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.15 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is too
old to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

54 Appendix C. History and License

Python Setup and Usage, Release 3.4.3

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.17 cfuhash

The implementation of the hash table used by the tracemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 55

Python Setup and Usage, Release 3.4.3

C.3.18 libmpdec

The _decimal Module is built using an included copy of the libmpdec library unless the build is configured
--with-system-libmpdec:

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

56 Appendix C. History and License

APPENDIX

D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2015 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

57

Python Setup and Usage, Release 3.4.3

58 Appendix D. Copyright

INDEX

Symbols
–help

command line option, 5
–version

command line option, 5
-?

command line option, 5
-B

command line option, 5
-E

command line option, 5
-I

command line option, 5
-J

command line option, 8
-O

command line option, 5
-OO

command line option, 5
-R

command line option, 6
-S

command line option, 6
-V

command line option, 5
-W arg

command line option, 6
-X

command line option, 7
-b

command line option, 5
-c <command>

command line option, 3
-d

command line option, 5
-h

command line option, 5
-i

command line option, 5
-m <module-name>

command line option, 3
-q

command line option, 6
-s

command line option, 6
-u

command line option, 6
-v

command line option, 6
-x

command line option, 7
..., 29
%PATH%, 16
__future__, 32
__slots__, 37
>>>, 29
2to3, 29

A
abstract base class, 29
argument, 29
attribute, 29

B
BDFL, 29
binary file, 30
bytecode, 30
bytes-like object, 30

C
class, 30
coercion, 30
command line option

–help, 5
–version, 5
-?, 5
-B, 5
-E, 5
-I, 5
-J, 8
-O, 5
-OO, 5
-R, 6
-S, 6

59

Python Setup and Usage, Release 3.4.3

-V, 5
-W arg, 6
-X, 7
-b, 5
-c <command>, 3
-d, 5
-h, 5
-i, 5
-m <module-name>, 3
-q, 6
-s, 6
-u, 6
-v, 6
-x, 7

complex number, 30
context manager, 30
CPython, 30

D
decorator, 30
descriptor, 31
dictionary, 31
docstring, 31
duck-typing, 31

E
EAFP, 31
environment variable

%PATH%, 16
exec_prefix, 12
PATH, 8, 12
prefix, 12
PYTHON*, 5
PYTHONASYNCIODEBUG, 10
PYTHONCASEOK, 9
PYTHONDEBUG, 5, 8
PYTHONDONTWRITEBYTECODE, 5, 9
PYTHONDUMPREFS, 10
PYTHONEXECUTABLE, 9
PYTHONFAULTHANDLER, 9
PYTHONHASHSEED, 6, 9
PYTHONHOME, 5, 8, 17
PYTHONINSPECT, 5, 8
PYTHONIOENCODING, 9
PYTHONMALLOCSTATS, 10
PYTHONNOUSERSITE, 9
PYTHONOPTIMIZE, 5, 8
PYTHONPATH, 5, 8, 17, 24
PYTHONSTARTUP, 5, 8
PYTHONTHREADDEBUG, 10
PYTHONTRACEMALLOC, 9
PYTHONUNBUFFERED, 6, 8
PYTHONUSERBASE, 9
PYTHONVERBOSE, 6, 8

PYTHONWARNINGS, 7, 9
exec_prefix, 12
expression, 31
extension module, 31

F
file object, 31
file-like object, 31
finder, 31
floor division, 31
function, 31
function annotation, 31

G
garbage collection, 32
generator, 32, 32
generator expression, 32, 32
generic function, 32
GIL, 32
global interpreter lock, 32

H
hashable, 32

I
IDLE, 33
immutable, 33
import path, 33
importer, 33
importing, 33
interactive, 33
interpreted, 33
iterable, 33
iterator, 33

K
key function, 33
keyword argument, 33

L
lambda, 34
LBYL, 34
list, 34
list comprehension, 34
loader, 34

M
mapping, 34
meta path finder, 34
metaclass, 34
method, 34
method resolution order, 34
module, 34

60 Index

Python Setup and Usage, Release 3.4.3

module spec, 34
MRO, 34
mutable, 34

N
named tuple, 34
namespace, 35
namespace package, 35
nested scope, 35
new-style class, 35

O
object, 35

P
package, 35
parameter, 35
PATH, 8, 12
path based finder, 36
path entry, 36
path entry finder, 36
path entry hook, 36
portion, 36
positional argument, 36
prefix, 12
provisional API, 36
provisional package, 36
Python 3000, 36
Python Enhancement Proposals

PEP 11, 15
PEP 230, 7
PEP 238, 31
PEP 278, 38
PEP 302, 31, 34
PEP 3107, 32
PEP 3116, 38
PEP 3155, 36
PEP 338, 4
PEP 343, 30
PEP 362, 29, 36
PEP 370, 6, 9
PEP 397, 22
PEP 411, 36
PEP 420, 31, 35, 36
PEP 443, 32

PYTHON*, 5
PYTHONDEBUG, 5
PYTHONDONTWRITEBYTECODE, 5
PYTHONHASHSEED, 6, 9
PYTHONHOME, 5, 8, 17
Pythonic, 36
PYTHONINSPECT, 5
PYTHONOPTIMIZE, 5
PYTHONPATH, 5, 8, 17, 24

PYTHONSTARTUP, 5
PYTHONUNBUFFERED, 6
PYTHONVERBOSE, 6
PYTHONWARNINGS, 7

Q
qualified name, 36

R
reference count, 37
regular package, 37

S
sequence, 37
single dispatch, 37
slice, 37
special method, 37
statement, 37
struct sequence, 37

T
text encoding, 37
text file, 37
triple-quoted string, 38
type, 38

U
universal newlines, 38

V
view, 38
virtual environment, 38
virtual machine, 38

Z
Zen of Python, 38

Index 61

	Command line and environment
	Command line
	Environment variables

	Using Python on Unix platforms
	Getting and installing the latest version of Python
	Building Python
	Python-related paths and files
	Miscellaneous
	Editors

	Using Python on Windows
	Installing Python
	Alternative bundles
	Configuring Python
	Python Launcher for Windows
	Additional modules
	Compiling Python on Windows
	Other resources

	Using Python on a Macintosh
	Getting and Installing MacPython
	The IDE
	Installing Additional Python Packages
	GUI Programming on the Mac
	Distributing Python Applications on the Mac
	Other Resources

	Additional Tools and Scripts
	pyvenv - Creating virtual environments

	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Index

