
What’s New in Python
Release 3.4.3

A. M. Kuchling

July 14, 2015

Python Software Foundation
Email: docs@python.org

Contents

1 Summary – Release Highlights 3

2 New Features 5
2.1 PEP 453: Explicit Bootstrapping of PIP in Python Installations . 5

Bootstrapping pip By Default . 5
Documentation Changes . 5

2.2 PEP 446: Newly Created File Descriptors Are Non-Inheritable . 6
2.3 Improvements to Codec Handling . 6
2.4 PEP 451: A ModuleSpec Type for the Import System . 7
2.5 Other Language Changes . 7

3 New Modules 8
3.1 asyncio . 8
3.2 ensurepip . 8
3.3 enum . 9
3.4 pathlib . 9
3.5 selectors . 9
3.6 statistics . 9
3.7 tracemalloc . 9

4 Improved Modules 10
4.1 abc . 10
4.2 aifc . 10
4.3 argparse . 10
4.4 audioop . 10
4.5 base64 . 11
4.6 collections . 11
4.7 colorsys . 11
4.8 contextlib . 11
4.9 dbm . 11
4.10 dis . 11
4.11 doctest . 12
4.12 email . 12
4.13 filecmp . 13

4.14 functools . 13
4.15 gc . 13
4.16 glob . 14
4.17 hashlib . 14
4.18 hmac . 14
4.19 html . 14
4.20 http . 14
4.21 idlelib and IDLE . 15
4.22 importlib . 15
4.23 inspect . 15
4.24 ipaddress . 16
4.25 logging . 16
4.26 marshal . 16
4.27 mmap . 16
4.28 multiprocessing . 16
4.29 operator . 17
4.30 os . 17
4.31 pdb . 17
4.32 pickle . 17
4.33 plistlib . 18
4.34 poplib . 18
4.35 pprint . 18
4.36 pty . 18
4.37 pydoc . 18
4.38 re . 19
4.39 resource . 19
4.40 select . 19
4.41 shelve . 19
4.42 shutil . 19
4.43 smtpd . 19
4.44 smtplib . 20
4.45 socket . 20
4.46 sqlite3 . 20
4.47 ssl . 20
4.48 stat . 21
4.49 struct . 21
4.50 subprocess . 21
4.51 sunau . 21
4.52 sys . 21
4.53 tarfile . 22
4.54 textwrap . 22
4.55 threading . 22
4.56 traceback . 22
4.57 types . 22
4.58 urllib . 22
4.59 unittest . 23
4.60 venv . 24
4.61 wave . 24
4.62 weakref . 24
4.63 xml.etree . 24
4.64 zipfile . 24

5 CPython Implementation Changes 25
5.1 PEP 445: Customization of CPython Memory Allocators . 25

5.2 PEP 442: Safe Object Finalization . 25
5.3 PEP 456: Secure and Interchangeable Hash Algorithm . 25
5.4 PEP 436: Argument Clinic . 25
5.5 Other Build and C API Changes . 26
5.6 Other Improvements . 26
5.7 Significant Optimizations . 27

6 Deprecated 28
6.1 Deprecations in the Python API . 28
6.2 Deprecated Features . 29

7 Removed 29
7.1 Operating Systems No Longer Supported . 29
7.2 API and Feature Removals . 29
7.3 Code Cleanups . 30

8 Porting to Python 3.4 30
8.1 Changes in ‘python’ Command Behavior . 30
8.2 Changes in the Python API . 30
8.3 Changes in the C API . 33

9 Changed in 3.4.3 33
9.1 PEP 476: Enabling certificate verification by default for stdlib http clients 33

Index 35

Author R. David Murray <rdmurray@bitdance.com> (Editor)

This article explains the new features in Python 3.4, compared to 3.3. Python 3.4 was released on March 16, 2014.
For full details, see the changelog.

See also:

PEP 429 – Python 3.4 Release Schedule

1 Summary – Release Highlights

New syntax features:

• No new syntax features were added in Python 3.4.

Other new features:

• pip should always be available (PEP 453).

• Newly created file descriptors are non-inheritable (PEP 446).

• command line option for isolated mode (issue 16499).

• improvements in the handling of codecs that are not text encodings (multiple issues).

• A ModuleSpec Type for the Import System (PEP 451). (Affects importer authors.)

• The marshal format has been made more compact and efficient (issue 16475).

New library modules:

mailto:rdmurray@bitdance.com
https://docs.python.org/3.4/whatsnew/changelog.html
http://www.python.org/dev/peps/pep-0429
http://www.python.org/dev/peps/pep-0453
http://www.python.org/dev/peps/pep-0446
https://bugs.python.org/issue16499
http://www.python.org/dev/peps/pep-0451
https://bugs.python.org/issue16475

• asyncio: New provisional API for asynchronous IO (PEP 3156).

• ensurepip: Bootstrapping the pip installer (PEP 453).

• enum: Support for enumeration types (PEP 435).

• pathlib: Object-oriented filesystem paths (PEP 428).

• selectors: High-level and efficient I/O multiplexing, built upon the select module primitives (part of PEP
3156).

• statistics: A basic numerically stable statistics library (PEP 450).

• tracemalloc: Trace Python memory allocations (PEP 454).

Significantly improved library modules:

• Single-dispatch generic functions in functools (PEP 443).

• New pickle protocol 4 (PEP 3154).

• multiprocessing now has an option to avoid using os.fork on Unix (issue 8713).

• email has a new submodule, contentmanager, and a new Message subclass (EmailMessage) that
simplify MIME handling (issue 18891).

• The inspect and pydoc modules are now capable of correct introspection of a much wider variety of callable
objects, which improves the output of the Python help() system.

• The ipaddress module API has been declared stable

Security improvements:

• Secure and interchangeable hash algorithm (PEP 456).

• Make newly created file descriptors non-inheritable (PEP 446) to avoid leaking file descriptors to child pro-
cesses.

• New command line option for isolated mode, (issue 16499).

• multiprocessing now has an option to avoid using os.fork on Unix. spawn and forkserver are more secure
because they avoid sharing data with child processes.

• multiprocessing child processes on Windows no longer inherit all of the parent’s inheritable handles, only
the necessary ones.

• A new hashlib.pbkdf2_hmac() function provides the PKCS#5 password-based key derivation function
2.

• TLSv1.1 and TLSv1.2 support for ssl.

• Retrieving certificates from the Windows system cert store support for ssl.

• Server-side SNI (Server Name Indication) support for ssl.

• The ssl.SSLContext class has a lot of improvements.

• All modules in the standard library that support SSL now support server certificate verification, in-
cluding hostname matching (ssl.match_hostname()) and CRLs (Certificate Revocation lists, see
ssl.SSLContext.load_verify_locations()).

CPython implementation improvements:

• Safe object finalization (PEP 442).

• Leveraging PEP 442, in most cases module globals are no longer set to None during finalization (issue 18214).

• Configurable memory allocators (PEP 445).

http://www.python.org/dev/peps/pep-3156
http://www.python.org/dev/peps/pep-0453
http://www.python.org/dev/peps/pep-0435
http://www.python.org/dev/peps/pep-0428
http://www.python.org/dev/peps/pep-3156
http://www.python.org/dev/peps/pep-3156
http://www.python.org/dev/peps/pep-0450
http://www.python.org/dev/peps/pep-0454
http://www.python.org/dev/peps/pep-0443
http://www.python.org/dev/peps/pep-3154
https://bugs.python.org/issue8713
https://bugs.python.org/issue18891
http://www.python.org/dev/peps/pep-0456
http://www.python.org/dev/peps/pep-0446
https://bugs.python.org/issue16499
http://en.wikipedia.org/wiki/PBKDF2
http://en.wikipedia.org/wiki/PBKDF2
http://www.python.org/dev/peps/pep-0442
http://www.python.org/dev/peps/pep-0442
https://bugs.python.org/issue18214
http://www.python.org/dev/peps/pep-0445

• Argument Clinic (PEP 436).

Please read on for a comprehensive list of user-facing changes, including many other smaller improvements, CPython
optimizations, deprecations, and potential porting issues.

2 New Features

2.1 PEP 453: Explicit Bootstrapping of PIP in Python Installations

Bootstrapping pip By Default

The new ensurepip module (defined in PEP 453) provides a standard cross-platform mechanism to bootstrap the
pip installer into Python installations and virtual environments. The version of pip included with Python 3.4.0 is
pip 1.5.4, and future 3.4.x maintenance releases will update the bundled version to the latest version of pip that is
available at the time of creating the release candidate.

By default, the commands pipX and pipX.Y will be installed on all platforms (where X.Y stands for the version
of the Python installation), along with the pip Python package and its dependencies. On Windows and in virtual
environments on all platforms, the unversioned pip command will also be installed. On other platforms, the system
wide unversioned pip command typically refers to the separately installed Python 2 version.

The pyvenv command line utility and the venv module make use of the ensurepip module to make pip readily
available in virtual environments. When using the command line utility, pip is installed by default, while when using
the venv module venv-api installation of pip must be requested explicitly.

For CPython source builds on POSIX systems, the make install and make altinstall commands bootstrap
pip by default. This behaviour can be controlled through configure options, and overridden through Makefile options.

On Windows and Mac OS X, the CPython installers now default to installing pip along with CPython itself (users
may opt out of installing it during the installation process). Window users will need to opt in to the automatic PATH
modifications to have pip available from the command line by default, otherwise it can still be accessed through the
Python launcher for Windows as py -m pip.

As discussed in the PEP, platform packagers may choose not to install these commands by default, as long as, when
invoked, they provide clear and simple directions on how to install them on that platform (usually using the system
package manager).

Note: To avoid conflicts between parallel Python 2 and Python 3 installations, only the versioned pip3 and pip3.4
commands are bootstrapped by default when ensurepip is invoked directly - the --default-pip option is
needed to also request the unversioned pip command. pyvenv and the Windows installer ensure that the unqualified
pip command is made available in those environments, and pip can always be invoked via the -m switch rather than
directly to avoid ambiguity on systems with multiple Python installations.

Documentation Changes

As part of this change, the installing-index and distributing-index sections of the documentation have been completely
redesigned as short getting started and FAQ documents. Most packaging documentation has now been moved out to
the Python Packaging Authority maintained Python Packaging User Guide and the documentation of the individual
projects.

However, as this migration is currently still incomplete, the legacy versions of those guides remaining available as
install-index and distutils-index.

See also:

http://www.python.org/dev/peps/pep-0436
http://www.python.org/dev/peps/pep-0453
https://www.python.org/dev/peps/pep-0453/#recommendations-for-downstream-distributors
https://packaging.python.org

PEP 453 – Explicit bootstrapping of pip in Python installations PEP written by Donald Stufft and Nick Coghlan,
implemented by Donald Stufft, Nick Coghlan, Martin von Löwis and Ned Deily.

2.2 PEP 446: Newly Created File Descriptors Are Non-Inheritable

PEP 446 makes newly created file descriptors non-inheritable. In general, this is the behavior an application will
want: when launching a new process, having currently open files also open in the new process can lead to all sorts of
hard to find bugs, and potentially to security issues.

However, there are occasions when inheritance is desired. To support these cases, the following new functions and
methods are available:

• os.get_inheritable(), os.set_inheritable()

• os.get_handle_inheritable(), os.set_handle_inheritable()

• socket.socket.get_inheritable(), socket.socket.set_inheritable()

See also:

PEP 446 – Make newly created file descriptors non-inheritable PEP written and implemented by Victor Stinner.

2.3 Improvements to Codec Handling

Since it was first introduced, the codecs module has always been intended to operate as a type-neutral dynamic
encoding and decoding system. However, its close coupling with the Python text model, especially the type restricted
convenience methods on the builtin str, bytes and bytearray types, has historically obscured that fact.

As a key step in clarifying the situation, the codecs.encode() and codecs.decode() convenience functions
are now properly documented in Python 2.7, 3.3 and 3.4. These functions have existed in the codecs module (and
have been covered by the regression test suite) since Python 2.4, but were previously only discoverable through runtime
introspection.

Unlike the convenience methods on str, bytes and bytearray, the codecs convenience functions support
arbitrary codecs in both Python 2 and Python 3, rather than being limited to Unicode text encodings (in Python 3) or
basestring <-> basestring conversions (in Python 2).

In Python 3.4, the interpreter is able to identify the known non-text encodings provided in the standard library and
direct users towards these general purpose convenience functions when appropriate:

>>> b"abcdef".decode("hex")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
LookupError: 'hex' is not a text encoding; use codecs.decode() to handle arbitrary codecs

>>> "hello".encode("rot13")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
LookupError: 'rot13' is not a text encoding; use codecs.encode() to handle arbitrary codecs

>>> open("foo.txt", encoding="hex")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
LookupError: 'hex' is not a text encoding; use codecs.open() to handle arbitrary codecs

In a related change, whenever it is feasible without breaking backwards compatibility, exceptions raised during encod-
ing and decoding operations are wrapped in a chained exception of the same type that mentions the name of the codec
responsible for producing the error:

http://www.python.org/dev/peps/pep-0453
http://www.python.org/dev/peps/pep-0446
http://www.python.org/dev/peps/pep-0446

>>> import codecs

>>> codecs.decode(b"abcdefgh", "hex")
Traceback (most recent call last):

File "/usr/lib/python3.4/encodings/hex_codec.py", line 20, in hex_decode
return (binascii.a2b_hex(input), len(input))

binascii.Error: Non-hexadecimal digit found

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

binascii.Error: decoding with 'hex' codec failed (Error: Non-hexadecimal digit found)

>>> codecs.encode("hello", "bz2")
Traceback (most recent call last):

File "/usr/lib/python3.4/encodings/bz2_codec.py", line 17, in bz2_encode
return (bz2.compress(input), len(input))

File "/usr/lib/python3.4/bz2.py", line 498, in compress
return comp.compress(data) + comp.flush()

TypeError: 'str' does not support the buffer interface

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: encoding with 'bz2' codec failed (TypeError: 'str' does not support the buffer interface)

Finally, as the examples above show, these improvements have permitted the restoration of the convenience aliases
for the non-Unicode codecs that were themselves restored in Python 3.2. This means that encoding binary data to and
from its hexadecimal representation (for example) can now be written as:

>>> from codecs import encode, decode
>>> encode(b"hello", "hex")
b'68656c6c6f'
>>> decode(b"68656c6c6f", "hex")
b'hello'

The binary and text transforms provided in the standard library are detailed in binary-transforms and text-transforms.

(Contributed by Nick Coghlan in issue 7475, issue 17827, issue 17828 and issue 19619.)

2.4 PEP 451: A ModuleSpec Type for the Import System

PEP 451 provides an encapsulation of the information about a module that the import machinery will use to load it
(that is, a module specification). This helps simplify both the import implementation and several import-related APIs.
The change is also a stepping stone for several future import-related improvements.

The public-facing changes from the PEP are entirely backward-compatible. Furthermore, they should be transparent to
everyone but importer authors. Key finder and loader methods have been deprecated, but they will continue working.
New importers should use the new methods described in the PEP. Existing importers should be updated to implement
the new methods. See the Deprecated section for a list of methods that should be replaced and their replacements.

https://bugs.python.org/issue7475
https://bugs.python.org/issue17827
https://bugs.python.org/issue17828
https://bugs.python.org/issue19619
http://www.python.org/dev/peps/pep-0451
https://mail.python.org/pipermail/python-dev/2013-November/130111.html

2.5 Other Language Changes

Some smaller changes made to the core Python language are:

• Unicode database updated to UCD version 6.3.

• min() and max() now accept a default keyword-only argument that can be used to specify the value they
return if the iterable they are evaluating has no elements. (Contributed by Julian Berman in issue 18111.)

• Module objects are now weakref‘able.

• Module __file__ attributes (and related values) should now always contain absolute paths by default, with
the sole exception of __main__.__file__ when a script has been executed directly using a relative path.
(Contributed by Brett Cannon in issue 18416.)

• All the UTF-* codecs (except UTF-7) now reject surrogates during both encoding and decoding unless the
surrogatepass error handler is used, with the exception of the UTF-16 decoder (which accepts valid surro-
gate pairs) and the UTF-16 encoder (which produces them while encoding non-BMP characters). (Contributed
by Victor Stinner, Kang-Hao (Kenny) Lu and Serhiy Storchaka in issue 12892.)

• New German EBCDIC codec cp273. (Contributed by Michael Bierenfeld and Andrew Kuchling in issue
1097797.)

• New Ukrainian codec cp1125. (Contributed by Serhiy Storchaka in issue 19668.)

• bytes.join() and bytearray.join() now accept arbitrary buffer objects as arguments. (Contributed by An-
toine Pitrou in issue 15958.)

• The int constructor now accepts any object that has an __index__ method for its base argument. (Con-
tributed by Mark Dickinson in issue 16772.)

• Frame objects now have a clear() method that clears all references to local variables from the frame. (Con-
tributed by Antoine Pitrou in issue 17934.)

• memoryview is now registered as a Sequence, and supports the reversed() builtin. (Contributed by
Nick Coghlan and Claudiu Popa in issue 18690 and issue 19078.)

• Signatures reported by help() have been modified and improved in several cases as a result of the introduction
of Argument Clinic and other changes to the inspect and pydoc modules.

• __length_hint__() is now part of the formal language specification (see PEP 424). (Contributed by
Armin Ronacher in issue 16148.)

3 New Modules

3.1 asyncio

The new asyncio module (defined in PEP 3156) provides a standard pluggable event loop model for Python, pro-
viding solid asynchronous IO support in the standard library, and making it easier for other event loop implementations
to interoperate with the standard library and each other.

For Python 3.4, this module is considered a provisional API.

See also:

PEP 3156 – Asynchronous IO Support Rebooted: the “asyncio” Module PEP written and implementation led by
Guido van Rossum.

https://bugs.python.org/issue18111
https://bugs.python.org/issue18416
https://bugs.python.org/issue12892
https://bugs.python.org/issue1097797
https://bugs.python.org/issue1097797
https://bugs.python.org/issue19668
https://bugs.python.org/issue15958
https://bugs.python.org/issue16772
https://bugs.python.org/issue17934
https://bugs.python.org/issue18690
https://bugs.python.org/issue19078
http://www.python.org/dev/peps/pep-0424
https://bugs.python.org/issue16148
http://www.python.org/dev/peps/pep-3156
http://www.python.org/dev/peps/pep-3156

3.2 ensurepip

The new ensurepip module is the primary infrastructure for the PEP 453 implementation. In the normal course
of events end users will not need to interact with this module, but it can be used to manually bootstrap pip if the
automated bootstrapping into an installation or virtual environment was declined.

ensurepip includes a bundled copy of pip, up-to-date as of the first release candidate of the release of CPython
with which it ships (this applies to both maintenance releases and feature releases). ensurepip does not access
the internet. If the installation has Internet access, after ensurepip is run the bundled pip can be used to upgrade
pip to a more recent release than the bundled one. (Note that such an upgraded version of pip is considered to be a
separately installed package and will not be removed if Python is uninstalled.)

The module is named ensurepip because if called when pip is already installed, it does nothing. It also has an
--upgrade option that will cause it to install the bundled copy of pip if the existing installed version of pip is
older than the bundled copy.

3.3 enum

The new enummodule (defined in PEP 435) provides a standard implementation of enumeration types, allowing other
modules (such as socket) to provide more informative error messages and better debugging support by replacing
opaque integer constants with backwards compatible enumeration values.

See also:

PEP 435 – Adding an Enum type to the Python standard library PEP written by Barry Warsaw, Eli Bendersky
and Ethan Furman, implemented by Ethan Furman.

3.4 pathlib

The new pathlib module offers classes representing filesystem paths with semantics appropriate for different oper-
ating systems. Path classes are divided between pure paths, which provide purely computational operations without
I/O, and concrete paths, which inherit from pure paths but also provide I/O operations.

For Python 3.4, this module is considered a provisional API.

See also:

PEP 428 – The pathlib module – object-oriented filesystem paths PEP written and implemented by Antoine
Pitrou.

3.5 selectors

The new selectors module (created as part of implementing PEP 3156) allows high-level and efficient I/O multi-
plexing, built upon the select module primitives.

3.6 statistics

The new statistics module (defined in PEP 450) offers some core statistics functionality directly in the standard
library. This module supports calculation of the mean, median, mode, variance and standard deviation of a data series.

See also:

PEP 450 – Adding A Statistics Module To The Standard Library PEP written and implemented by Steven
D’Aprano

http://www.python.org/dev/peps/pep-0453
http://www.python.org/dev/peps/pep-0435
http://www.python.org/dev/peps/pep-0435
http://www.python.org/dev/peps/pep-0428
http://www.python.org/dev/peps/pep-3156
http://www.python.org/dev/peps/pep-0450
http://www.python.org/dev/peps/pep-0450

3.7 tracemalloc

The new tracemalloc module (defined in PEP 454) is a debug tool to trace memory blocks allocated by Python.
It provides the following information:

• Trace where an object was allocated

• Statistics on allocated memory blocks per filename and per line number: total size, number and average size of
allocated memory blocks

• Compute the differences between two snapshots to detect memory leaks

See also:

PEP 454 – Add a new tracemalloc module to trace Python memory allocations PEP written and implemented by
Victor Stinner

4 Improved Modules

4.1 abc

New function abc.get_cache_token() can be used to know when to invalidate caches that are affected by
changes in the object graph. (Contributed by Łukasz Langa in issue 16832.)

New class ABC has ABCMeta as its meta class. Using ABC as a base class has essentially the same effect as specifying
metaclass=abc.ABCMeta, but is simpler to type and easier to read. (Contributed by Bruno Dupuis in issue
16049.)

4.2 aifc

The getparams() method now returns a namedtuple rather than a plain tuple. (Contributed by Claudiu Popa in
issue 17818.)

aifc.open() now supports the context management protocol: when used in a with block, the close() method
of the returned object will be called automatically at the end of the block. (Contributed by Serhiy Storchacha in issue
16486.)

The writeframesraw() and writeframes() methods now accept any bytes-like object. (Contributed by Ser-
hiy Storchaka in issue 8311.)

4.3 argparse

The FileType class now accepts encoding and errors arguments, which are passed through to open(). (Con-
tributed by Lucas Maystre in issue 11175.)

4.4 audioop

audioop now supports 24-bit samples. (Contributed by Serhiy Storchaka in issue 12866.)

New byteswap() function converts big-endian samples to little-endian and vice versa. (Contributed by Serhiy
Storchaka in issue 19641.)

All audioop functions now accept any bytes-like object. Strings are not accepted: they didn’t work before, now they
raise an error right away. (Contributed by Serhiy Storchaka in issue 16685.)

http://www.python.org/dev/peps/pep-0454
http://www.python.org/dev/peps/pep-0454
https://bugs.python.org/issue16832
https://bugs.python.org/issue16049
https://bugs.python.org/issue16049
https://bugs.python.org/issue17818
https://bugs.python.org/issue16486
https://bugs.python.org/issue16486
https://bugs.python.org/issue8311
https://bugs.python.org/issue11175
https://bugs.python.org/issue12866
https://bugs.python.org/issue19641
https://bugs.python.org/issue16685

4.5 base64

The encoding and decoding functions in base64 now accept any bytes-like object in cases where it previously re-
quired a bytes or bytearray instance. (Contributed by Nick Coghlan in issue 17839.)

New functions a85encode(), a85decode(), b85encode(), and b85decode() provide the ability to encode
and decode binary data from and to Ascii85 and the git/mercurial Base85 formats, respectively. The a85 functions
have options that can be used to make them compatible with the variants of the Ascii85 encoding, including the
Adobe variant. (Contributed by Martin Morrison, the Mercurial project, Serhiy Storchaka, and Antoine Pitrou in issue
17618.)

4.6 collections

The ChainMap.new_child() method now accepts an m argument specifying the child map to add to the chain.
This allows an existing mapping and/or a custom mapping type to be used for the child. (Contributed by Vinay Sajip
in issue 16613.)

4.7 colorsys

The number of digits in the coefficients for the RGB — YIQ conversions have been expanded so that they match the
FCC NTSC versions. The change in results should be less than 1% and may better match results found elsewhere.
(Contributed by Brian Landers and Serhiy Storchaka in issue 14323.)

4.8 contextlib

The new contextlib.suppress context manager helps to clarify the intent of code that deliberately suppresses
exceptions from a single statement. (Contributed by Raymond Hettinger in issue 15806 and Zero Piraeus in issue
19266.)

The new contextlib.redirect_stdout() context manager makes it easier for utility scripts to handle in-
flexible APIs that write their output to sys.stdout and don’t provide any options to redirect it. Using the context
manager, the sys.stdout output can be redirected to any other stream or, in conjunction with io.StringIO,
to a string. The latter can be especially useful, for example, to capture output from a function that was written to
implement a command line interface. It is recommended only for utility scripts because it affects the global state of
sys.stdout. (Contributed by Raymond Hettinger in issue 15805.)

The contextlib documentation has also been updated to include a discussion of the differences between single
use, reusable and reentrant context managers.

4.9 dbm

dbm.open() objects now support the context management protocol. When used in a with statement, the close
method of the database object will be called automatically at the end of the block. (Contributed by Claudiu Popa and
Nick Coghlan in issue 19282.)

4.10 dis

Functions show_code(), dis(), distb(), and disassemble() now accept a keyword-only file argument
that controls where they write their output.

The dis module is now built around an Instruction class that provides object oriented access to the details of
each individual bytecode operation.

https://bugs.python.org/issue17839
https://bugs.python.org/issue17618
https://bugs.python.org/issue17618
https://bugs.python.org/issue16613
https://bugs.python.org/issue14323
https://bugs.python.org/issue15806
https://bugs.python.org/issue19266
https://bugs.python.org/issue19266
https://bugs.python.org/issue15805
https://bugs.python.org/issue19282

A new method, get_instructions(), provides an iterator that emits the Instruction stream for a given piece of
Python code. Thus it is now possible to write a program that inspects and manipulates a bytecode object in ways
different from those provided by the dis module itself. For example:

>>> import dis
>>> for instr in dis.get_instructions(lambda x: x + 1):
... print(instr.opname)
LOAD_FAST
LOAD_CONST
BINARY_ADD
RETURN_VALUE

The various display tools in the dis module have been rewritten to use these new components.

In addition, a new application-friendly class Bytecode provides an object-oriented API for inspecting bytecode in
both in human-readable form and for iterating over instructions. The Bytecode constructor takes the same arguments
that get_instruction() does (plus an optional current_offset), and the resulting object can be iterated to produce
Instruction objects. But it also has a dis method, equivalent to calling dis on the constructor argument, but
returned as a multi-line string:

>>> bytecode = dis.Bytecode(lambda x: x +1, current_offset=3)
>>> for instr in bytecode:
... print('{} ({})'.format(instr.opname, instr.opcode))
LOAD_FAST (124)
LOAD_CONST (100)
BINARY_ADD (23)
RETURN_VALUE (83)
>>> bytecode.dis().splitlines()
[' 1 0 LOAD_FAST 0 (x)',
' --> 3 LOAD_CONST 1 (1)',
' 6 BINARY_ADD',
' 7 RETURN_VALUE']

Bytecode also has a class method, from_traceback(), that provides the ability to manipulate a traceback (that
is, print(Bytecode.from_traceback(tb).dis()) is equivalent to distb(tb)).

(Contributed by Nick Coghlan, Ryan Kelly and Thomas Kluyver in issue 11816 and Claudiu Popa in issue 17916.)

New function stack_effect() computes the effect on the Python stack of a given opcode and argument, informa-
tion that is not otherwise available. (Contributed by Larry Hastings in issue 19722.)

4.11 doctest

A new option flag, FAIL_FAST, halts test running as soon as the first failure is detected. (Contributed by R. David
Murray and Daniel Urban in issue 16522.)

The doctest command line interface now uses argparse, and has two new options, -o and -f. -o allows doctest
options to be specified on the command line, and -f is a shorthand for -o FAIL_FAST (to parallel the similar option
supported by the unittest CLI). (Contributed by R. David Murray in issue 11390.)

doctest will now find doctests in extension module __doc__ strings. (Contributed by Zachary Ware in issue
3158.)

4.12 email

as_string() now accepts a policy argument to override the default policy of the message when generating a string
representation of it. This means that as_string can now be used in more circumstances, instead of having to create

https://bugs.python.org/issue11816
https://bugs.python.org/issue17916
https://bugs.python.org/issue19722
https://bugs.python.org/issue16522
https://bugs.python.org/issue11390
https://bugs.python.org/issue3158
https://bugs.python.org/issue3158

and use a generator in order to pass formatting parameters to its flatten method. (Contributed by R. David
Murray in issue 18600.)

New method as_bytes() added to produce a bytes representation of the message in a fashion similar to how
as_string produces a string representation. It does not accept the maxheaderlen argument, but does accept the
unixfrom and policy arguments. The Message __bytes__() method calls it, meaning that bytes(mymsg) will
now produce the intuitive result: a bytes object containing the fully formatted message. (Contributed by R. David
Murray in issue 18600.)

The Message.set_param() message now accepts a replace keyword argument. When specified, the associated
header will be updated without changing its location in the list of headers. For backward compatibility, the default
is False. (Contributed by R. David Murray in issue 18891.) A pair of new subclasses of Message have been
added (EmailMessage and MIMEPart), along with a new sub-module, contentmanager and a new policy
attribute content_manager. All documentation is currently in the new module, which is being added as part of
email’s new provisional API. These classes provide a number of new methods that make extracting content from and
inserting content into email messages much easier. For details, see the contentmanager documentation and the
email-contentmanager-api-examples. These API additions complete the bulk of the work that was planned as part of
the email6 project. The currently provisional API is scheduled to become final in Python 3.5 (possibly with a few
minor additions in the area of error handling). (Contributed by R. David Murray in issue 18891.)

4.13 filecmp

A new clear_cache() function provides the ability to clear the filecmp comparison cache, which uses
os.stat() information to determine if the file has changed since the last compare. This can be used, for exam-
ple, if the file might have been changed and re-checked in less time than the resolution of a particular filesystem’s file
modification time field. (Contributed by Mark Levitt in issue 18149.)

New module attribute DEFAULT_IGNORES provides the list of directories that are used as the default value for the
ignore parameter of the dircmp() function. (Contributed by Eli Bendersky in issue 15442.)

4.14 functools

The new partialmethod() descriptor brings partial argument application to descriptors, just as partial() pro-
vides for normal callables. The new descriptor also makes it easier to get arbitrary callables (including partial()
instances) to behave like normal instance methods when included in a class definition. (Contributed by Alon Horev
and Nick Coghlan in issue 4331.) The new singledispatch() decorator brings support for single-dispatch
generic functions to the Python standard library. Where object oriented programming focuses on grouping multiple
operations on a common set of data into a class, a generic function focuses on grouping multiple implementations of
an operation that allows it to work with different kinds of data.

See also:

PEP 443 – Single-dispatch generic functions PEP written and implemented by Łukasz Langa.

total_ordering() now supports a return value of NotImplemented from the underlying comparison function.
(Contributed by Katie Miller in issue 10042.)

A pure-python version of the partial() function is now in the stdlib; in CPython it is overridden by the C acceler-
ated version, but it is available for other implementations to use. (Contributed by Brian Thorne in issue 12428.)

4.15 gc

New function get_stats() returns a list of three per-generation dictionaries containing the collections statistics
since interpreter startup. (Contributed by Antoine Pitrou in issue 16351.)

https://bugs.python.org/issue18600
https://bugs.python.org/issue18600
https://bugs.python.org/issue18891
https://bugs.python.org/issue18891
https://bugs.python.org/issue18149
https://bugs.python.org/issue15442
https://bugs.python.org/issue4331
http://www.python.org/dev/peps/pep-0443
https://bugs.python.org/issue10042
https://bugs.python.org/issue12428
https://bugs.python.org/issue16351

4.16 glob

A new function escape() provides a way to escape special characters in a filename so that they do not become part
of the globbing expansion but are instead matched literally. (Contributed by Serhiy Storchaka in issue 8402.)

4.17 hashlib

A new hashlib.pbkdf2_hmac() function provides the PKCS#5 password-based key derivation function 2.
(Contributed by Christian Heimes in issue 18582.)

The name attribute of hashlib hash objects is now a formally supported interface. It has always existed in CPython’s
hashlib (although it did not return lower case names for all supported hashes), but it was not a public interface and
so some other Python implementations have not previously supported it. (Contributed by Jason R. Coombs in issue
18532.)

4.18 hmac

hmac now accepts bytearray as well as bytes for the key argument to the new() function, and the msg parameter
to both the new() function and the update() method now accepts any type supported by the hashlib module.
(Contributed by Jonas Borgström in issue 18240.)

The digestmod argument to the hmac.new() function may now be any hash digest name recognized by hashlib.
In addition, the current behavior in which the value of digestmod defaults to MD5 is deprecated: in a future version of
Python there will be no default value. (Contributed by Christian Heimes in issue 17276.)

With the addition of block_size and name attributes (and the formal documentation of the digest_size at-
tribute), the hmac module now conforms fully to the PEP 247 API. (Contributed by Christian Heimes in issue 18775.)

4.19 html

New function unescape() function converts HTML5 character references to the corresponding Unicode characters.
(Contributed by Ezio Melotti in issue 2927.)

HTMLParser accepts a new keyword argument convert_charrefs that, when True, automatically converts all char-
acter references. For backward-compatibility, its value defaults to False, but it will change to True in a future
version of Python, so you are invited to set it explicitly and update your code to use this new feature. (Contributed by
Ezio Melotti in issue 13633.)

The strict argument of HTMLParser is now deprecated. (Contributed by Ezio Melotti in issue 15114.)

4.20 http

send_error() now accepts an optional additional explain parameter which can be used to provide an extended
error description, overriding the hardcoded default if there is one. This extended error description will be formatted
using the error_message_format attribute and sent as the body of the error response. (Contributed by Karl Cow
in issue 12921.)

The http.server command line interface now has a -b/--bind option that causes the server to listen on a
specific address. (Contributed by Malte Swart in issue 17764.)

https://bugs.python.org/issue8402
http://en.wikipedia.org/wiki/PBKDF2
https://bugs.python.org/issue18582
https://bugs.python.org/issue18532
https://bugs.python.org/issue18532
https://bugs.python.org/issue18240
https://bugs.python.org/issue17276
http://www.python.org/dev/peps/pep-0247
https://bugs.python.org/issue18775
https://bugs.python.org/issue2927
https://bugs.python.org/issue13633
https://bugs.python.org/issue15114
https://bugs.python.org/issue12921
https://bugs.python.org/issue17764

4.21 idlelib and IDLE

Since idlelib implements the IDLE shell and editor and is not intended for import by other programs, it gets improve-
ments with every release. See Lib/idlelib/NEWS.txt for a cumulative list of changes since 3.3.0, as well as
changes made in future 3.4.x releases. This file is also available from the IDLE Help -> About Idle dialog.

4.22 importlib

The InspectLoader ABC defines a new method, source_to_code() that accepts source data and a path
and returns a code object. The default implementation is equivalent to compile(data, path, ’exec’,
dont_inherit=True). (Contributed by Eric Snow and Brett Cannon in issue 15627.)

InspectLoader also now has a default implementation for the get_code() method. However, it will normally
be desirable to override the default implementation for performance reasons. (Contributed by Brett Cannon in issue
18072.)

The reload() function has been moved from imp to importlib as part of the imp module deprecation. (Con-
tributed by Berker Peksag in issue 18193.)

importlib.util now has a MAGIC_NUMBER attribute providing access to the bytecode version number. This
replaces the get_magic() function in the deprecated imp module. (Contributed by Brett Cannon in issue 18192.)

New importlib.util functions cache_from_source() and source_from_cache() replace the same-
named functions in the deprecated imp module. (Contributed by Brett Cannon in issue 18194.)

The importlib bootstrap NamespaceLoader now conforms to the InspectLoader ABC, which means that
runpy and python -m can now be used with namespace packages. (Contributed by Brett Cannon in issue 18058.)

importlib.util has a new function decode_source() that decodes source from bytes using universal newline
processing. This is useful for implementing InspectLoader.get_source() methods.

importlib.machinery.ExtensionFileLoader now has a get_filename() method. This was inadver-
tently omitted in the original implementation. (Contributed by Eric Snow in issue 19152.)

4.23 inspect

The inspectmodule now offers a basic command line interface to quickly display source code and other information
for modules, classes and functions. (Contributed by Claudiu Popa and Nick Coghlan in issue 18626.)

unwrap() makes it easy to unravel wrapper function chains created by functools.wraps() (and any other API
that sets the __wrapped__ attribute on a wrapper function). (Contributed by Daniel Urban, Aaron Iles and Nick
Coghlan in issue 13266.)

As part of the implementation of the new enum module, the inspect module now has substantially better support
for custom __dir__ methods and dynamic class attributes provided through metaclasses. (Contributed by Ethan
Furman in issue 18929 and issue 19030.)

getfullargspec() and getargspec() now use the signature() API. This allows them to support a much
broader range of callables, including those with __signature__ attributes, those with metadata provided by ar-
gument clinic, functools.partial() objects and more. Note that, unlike signature(), these functions still
ignore __wrapped__ attributes, and report the already bound first argument for bound methods, so it is still neces-
sary to update your code to use signature() directly if those features are desired. (Contributed by Yury Selivanov
in issue 17481.)

signature() now supports duck types of CPython functions, which adds support for functions compiled with
Cython. (Contributed by Stefan Behnel and Yury Selivanov in issue 17159.)

https://bugs.python.org/issue15627
https://bugs.python.org/issue18072
https://bugs.python.org/issue18072
https://bugs.python.org/issue18193
https://bugs.python.org/issue18192
https://bugs.python.org/issue18194
https://bugs.python.org/issue18058
https://bugs.python.org/issue19152
https://bugs.python.org/issue18626
https://bugs.python.org/issue13266
https://bugs.python.org/issue18929
https://bugs.python.org/issue19030
https://bugs.python.org/issue17481
https://bugs.python.org/issue17159

4.24 ipaddress

ipaddress was added to the standard library in Python 3.3 as a provisional API. With the release of Python 3.4, this
qualification has been removed: ipaddress is now considered a stable API, covered by the normal standard library
requirements to maintain backwards compatibility.

A new is_global property is True if an address is globally routeable. (Contributed by Peter Moody in issue
17400.)

4.25 logging

The TimedRotatingFileHandler has a new atTime parameter that can be used to specify the time of day when
rollover should happen. (Contributed by Ronald Oussoren in issue 9556.)

SocketHandler and DatagramHandler now support Unix domain sockets (by setting port to None). (Con-
tributed by Vinay Sajip in commit ce46195b56a9.)

fileConfig() now accepts a configparser.RawConfigParser subclass instance for the fname parameter.
This facilitates using a configuration file when logging configuration is just a part of the overall application configura-
tion, or where the application modifies the configuration before passing it to fileConfig(). (Contributed by Vinay
Sajip in issue 16110.)

Logging configuration data received from a socket via the logging.config.listen() function can now be
validated before being processed by supplying a verification function as the argument to the new verify keyword
argument. (Contributed by Vinay Sajip in issue 15452.)

4.26 marshal

The default marshal version has been bumped to 3. The code implementing the new version restores the Python2
behavior of recording only one copy of interned strings and preserving the interning on deserialization, and extends
this “one copy” ability to any object type (including handling recursive references). This reduces both the size of
.pyc files and the amount of memory a module occupies in memory when it is loaded from a .pyc (or .pyo) file.
(Contributed by Kristján Valur Jónsson in issue 16475, with additional speedups by Antoine Pitrou in issue 19219.)

4.27 mmap

mmap objects can now be weakrefed. (Contributed by Valerie Lambert in issue 4885.)

4.28 multiprocessing

On Unix two new start methods, spawn and forkserver, have been added for starting processes using
multiprocessing. These make the mixing of processes with threads more robust, and the spawnmethod matches
the semantics that multiprocessing has always used on Windows. New function get_all_start_methods() re-
ports all start methods available on the platform, get_start_method() reports the current start method, and
set_start_method() sets the start method. (Contributed by Richard Oudkerk in issue 8713.)

multiprocessing also now has the concept of a context, which determines how child processes are created.
New function get_context() returns a context that uses a specified start method. It has the same API as the
multiprocessing module itself, so you can use it to create Pools and other objects that will operate within that
context. This allows a framework and an application or different parts of the same application to use multiprocessing
without interfering with each other. (Contributed by Richard Oudkerk in issue 18999.)

Except when using the old fork start method, child processes no longer inherit unneeded handles/file descriptors from
their parents (part of issue 8713).

https://bugs.python.org/issue17400
https://bugs.python.org/issue17400
https://bugs.python.org/issue9556
https://bugs.python.org/issue16110
https://bugs.python.org/issue15452
https://bugs.python.org/issue16475
https://bugs.python.org/issue19219
https://bugs.python.org/issue4885
https://bugs.python.org/issue8713
https://bugs.python.org/issue18999
https://bugs.python.org/issue8713

multiprocessing now relies on runpy (which implements the -m switch) to initialise __main__ appropriately
in child processes when using the spawn or forkserver start methods. This resolves some edge cases where
combining multiprocessing, the -m command line switch, and explicit relative imports could cause obscure failures in
child processes. (Contributed by Nick Coghlan in issue 19946.)

4.29 operator

New function length_hint() provides an implementation of the specification for how the
__length_hint__() special method should be used, as part of the PEP 424 formal specification of this
language feature. (Contributed by Armin Ronacher in issue 16148.)

There is now a pure-python version of the operator module available for reference and for use by alternate imple-
mentations of Python. (Contributed by Zachary Ware in issue 16694.)

4.30 os

There are new functions to get and set the inheritable flag of a file descriptor (os.get_inheritable(),
os.set_inheritable()) or a Windows handle (os.get_handle_inheritable(),
os.set_handle_inheritable()).

New function cpu_count() reports the number of CPUs available on the platform on which Python is running (or
None if the count can’t be determined). The multiprocessing.cpu_count() function is now implemented in
terms of this function). (Contributed by Trent Nelson, Yogesh Chaudhari, Victor Stinner, and Charles-François Natali
in issue 17914.)

os.path.samestat() is now available on the Windows platform (and the os.path.samefile() implemen-
tation is now shared between Unix and Windows). (Contributed by Brian Curtin in issue 11939.)

os.path.ismount() now recognizes volumes mounted below a drive root on Windows. (Contributed by Tim
Golden in issue 9035.)

os.open() supports two new flags on platforms that provide them, O_PATH (un-opened file descriptor), and
O_TMPFILE (unnamed temporary file; as of 3.4.0 release available only on Linux systems with a kernel version
of 3.11 or newer that have uapi headers). (Contributed by Christian Heimes in issue 18673 and Benjamin Peterson,
respectively.)

4.31 pdb

pdb has been enhanced to handle generators, yield, and yield from in a more useful fashion. This is especially
helpful when debugging asyncio based programs. (Contributed by Andrew Svetlov and Xavier de Gaye in issue
16596.)

The print command has been removed from pdb, restoring access to the Python print() function from the
pdb command line. Python2’s pdb did not have a print command; instead, entering print executed the print
statement. In Python3 print was mistakenly made an alias for the pdb p command. p, however, prints the repr
of its argument, not the str like the Python2 print command did. Worse, the Python3 pdb print command
shadowed the Python3 print function, making it inaccessible at the pdb prompt. (Contributed by Connor Osborn
in issue 18764.)

4.32 pickle

pickle now supports (but does not use by default) a new pickle protocol, protocol 4. This new protocol addresses
a number of issues that were present in previous protocols, such as the serialization of nested classes, very large

https://bugs.python.org/issue19946
http://www.python.org/dev/peps/pep-0424
https://bugs.python.org/issue16148
https://bugs.python.org/issue16694
https://bugs.python.org/issue17914
https://bugs.python.org/issue11939
https://bugs.python.org/issue9035
https://bugs.python.org/issue18673
https://bugs.python.org/issue16596
https://bugs.python.org/issue16596
https://bugs.python.org/issue18764

strings and containers, and classes whose __new__() method takes keyword-only arguments. It also provides some
efficiency improvements.

See also:

PEP 3154 – Pickle protocol 4 PEP written by Antoine Pitrou and implemented by Alexandre Vassalotti.

4.33 plistlib

plistlib now has an API that is similar to the standard pattern for stdlib serialization protocols, with new load(),
dump(), loads(), and dumps() functions. (The older API is now deprecated.) In addition to the already sup-
ported XML plist format (FMT_XML), it also now supports the binary plist format (FMT_BINARY). (Contributed by
Ronald Oussoren and others in issue 14455.)

4.34 poplib

Two new methods have been added to poplib: capa(), which returns the list of capabilities advertised by the POP
server, and stls(), which switches a clear-text POP3 session into an encrypted POP3 session if the POP server
supports it. (Contributed by Lorenzo Catucci in issue 4473.)

4.35 pprint

The pprint module’s PrettyPrinter class and its pformat(), and pprint() functions have a new option,
compact, that controls how the output is formatted. Currently setting compact to True means that sequences will
be printed with as many sequence elements as will fit within width on each (indented) line. (Contributed by Serhiy
Storchaka in issue 19132.)

Long strings are now wrapped using Python’s normal line continuation syntax. (Contributed by Antoine Pitrou in
issue 17150.)

4.36 pty

pty.spawn() now returns the status value from os.waitpid() on the child process, instead of None. (Con-
tributed by Gregory P. Smith.)

4.37 pydoc

The pydocmodule is now based directly on the inspect.signature() introspection API, allowing it to provide
signature information for a wider variety of callable objects. This change also means that __wrapped__ attributes
are now taken into account when displaying help information. (Contributed by Larry Hastings in issue 19674.)

The pydoc module no longer displays the self parameter for already bound methods. Instead, it aims to always
display the exact current signature of the supplied callable. (Contributed by Larry Hastings in issue 20710.)

In addition to the changes that have been made to pydoc directly, its handling of custom __dir__ methods and var-
ious descriptor behaviours has also been improved substantially by the underlying changes in the inspect module.

As the help() builtin is based on pydoc, the above changes also affect the behaviour of help().

http://www.python.org/dev/peps/pep-3154
https://bugs.python.org/issue14455
https://bugs.python.org/issue4473
https://bugs.python.org/issue19132
https://bugs.python.org/issue17150
https://bugs.python.org/issue19674
https://bugs.python.org/issue20710

4.38 re

New fullmatch() function and regex.fullmatch() method anchor the pattern at both ends of the string to
match. This provides a way to be explicit about the goal of the match, which avoids a class of subtle bugs where $
characters get lost during code changes or the addition of alternatives to an existing regular expression. (Contributed
by Matthew Barnett in issue 16203.)

The repr of regex objects now includes the pattern and the flags; the repr of match objects now includes the start, end,
and the part of the string that matched. (Contributed by Hugo Lopes Tavares and Serhiy Storchaka in issue 13592 and
issue 17087.)

4.39 resource

New prlimit() function, available on Linux platforms with a kernel version of 2.6.36 or later and glibc of 2.13
or later, provides the ability to query or set the resource limits for processes other than the one making the call.
(Contributed by Christian Heimes in issue 16595.)

On Linux kernel version 2.6.36 or later, there are there are also some new Linux specific constants:
RLIMIT_MSGQUEUE, RLIMIT_NICE, RLIMIT_RTPRIO, RLIMIT_RTTIME, and RLIMIT_SIGPENDING.
(Contributed by Christian Heimes in issue 19324.)

On FreeBSD version 9 and later, there some new FreeBSD specific constants: RLIMIT_SBSIZE, RLIMIT_SWAP,
and RLIMIT_NPTS. (Contributed by Claudiu Popa in issue 19343.)

4.40 select

epoll objects now support the context management protocol. When used in a with statement, the close()method
will be called automatically at the end of the block. (Contributed by Serhiy Storchaka in issue 16488.)

devpoll objects now have fileno() and close() methods, as well as a new attribute closed. (Contributed
by Victor Stinner in issue 18794.)

4.41 shelve

Shelf instances may now be used in with statements, and will be automatically closed at the end of the with block.
(Contributed by Filip Gruszczyński in issue 13896.)

4.42 shutil

copyfile() now raises a specific Error subclass, SameFileError, when the source and destination are the
same file, which allows an application to take appropriate action on this specific error. (Contributed by Atsuo Ishimoto
and Hynek Schlawack in issue 1492704.)

4.43 smtpd

The SMTPServer and SMTPChannel classes now accept a map keyword argument which, if specified, is passed
in to asynchat.async_chat as its map argument. This allows an application to avoid affecting the global socket
map. (Contributed by Vinay Sajip in issue 11959.)

https://bugs.python.org/issue16203
https://bugs.python.org/issue13592
https://bugs.python.org/issue17087
https://bugs.python.org/issue16595
https://bugs.python.org/issue19324
https://bugs.python.org/issue19343
https://bugs.python.org/issue16488
https://bugs.python.org/issue18794
https://bugs.python.org/issue13896
https://bugs.python.org/issue1492704
https://bugs.python.org/issue11959

4.44 smtplib

SMTPException is now a subclass of OSError, which allows both socket level errors and SMTP protocol level
errors to be caught in one try/except statement by code that only cares whether or not an error occurred. (Contributed
by Ned Jackson Lovely in issue 2118.)

4.45 socket

The socket module now supports the CAN_BCM protocol on platforms that support it. (Contributed by Brian Thorne
in issue 15359.)

Socket objects have new methods to get or set their inheritable flag, get_inheritable() and
set_inheritable().

The socket.AF_* and socket.SOCK_* constants are now enumeration values using the new enum module.
This allows meaningful names to be printed during debugging, instead of integer “magic numbers”.

The AF_LINK constant is now available on BSD and OSX.

inet_pton() and inet_ntop() are now supported on Windows. (Contributed by Atsuo Ishimoto in issue 7171.)

4.46 sqlite3

A new boolean parameter to the connect() function, uri, can be used to indicate that the database parameter is a
uri (see the SQLite URI documentation). (Contributed by poq in issue 13773.)

4.47 ssl

PROTOCOL_TLSv1_1 and PROTOCOL_TLSv1_2 (TLSv1.1 and TLSv1.2 support) have been added; support for
these protocols is only available if Python is linked with OpenSSL 1.0.1 or later. (Contributed by Michele Orrù and
Antoine Pitrou in issue 16692.) New function create_default_context() provides a standard way to obtain
an SSLContext whose settings are intended to be a reasonable balance between compatibility and security. These
settings are more stringent than the defaults provided by the SSLContext constructor, and may be adjusted in the
future, without prior deprecation, if best-practice security requirements change. The new recommended best practice
for using stdlib libraries that support SSL is to use create_default_context() to obtain an SSLContext
object, modify it if needed, and then pass it as the context argument of the appropriate stdlib API. (Contributed by
Christian Heimes in issue 19689.)

SSLContext method load_verify_locations() accepts a new optional argument cadata, which can be
used to provide PEM or DER encoded certificates directly via strings or bytes, respectively. (Contributed by Christian
Heimes in issue 18138.)

New function get_default_verify_paths() returns a named tuple of the paths and environment variables
that the set_default_verify_paths() method uses to set OpenSSL’s default cafile and capath. This
can be an aid in debugging default verification issues. (Contributed by Christian Heimes in issue 18143.)

SSLContext has a new method, cert_store_stats(), that reports the number of loaded X.509 certs, X.509
CA certs, and certificate revocation lists (crls), as well as a get_ca_certs() method that returns a list of the
loaded CA certificates. (Contributed by Christian Heimes in issue 18147.)

If OpenSSL 0.9.8 or later is available, SSLContext has an new attribute verify_flags that can be used to
control the certificate verification process by setting it to some combination of the new constants VERIFY_DEFAULT,
VERIFY_CRL_CHECK_LEAF, VERIFY_CRL_CHECK_CHAIN, or VERIFY_X509_STRICT. OpenSSL does not
do any CRL verification by default. (Contributed by Christien Heimes in issue 8813.)

https://bugs.python.org/issue2118
https://bugs.python.org/issue15359
https://bugs.python.org/issue7171
http://www.sqlite.org/uri.html
https://bugs.python.org/issue13773
https://bugs.python.org/issue16692
https://bugs.python.org/issue19689
https://bugs.python.org/issue18138
https://bugs.python.org/issue18143
https://bugs.python.org/issue18147
https://bugs.python.org/issue8813

New SSLContext method load_default_certs() loads a set of default “certificate authority” (CA) cer-
tificates from default locations, which vary according to the platform. It can be used to load both TLS web
server authentication certificates (purpose=SERVER_AUTH) for a client to use to verify a server, and certifi-
cates for a server to use in verifying client certificates (purpose=CLIENT_AUTH). (Contributed by Christian
Heimes in issue 19292.) Two new windows-only functions, enum_certificates() and enum_crls()
provide the ability to retrieve certificates, certificate information, and CRLs from the Windows cert store. (Con-
tributed by Christian Heimes in issue 17134.) Support for server-side SNI (Server Name Indication) using the new
ssl.SSLContext.set_servername_callback() method. (Contributed by Daniel Black in issue 8109.)

The dictionary returned by SSLSocket.getpeercert() contains additional X509v3 extension items:
crlDistributionPoints, calIssuers, and OCSP URIs. (Contributed by Christian Heimes in issue 18379.)

4.48 stat

The stat module is now backed by a C implementation in _stat. A C implementation is required as most of the
values aren’t standardized and are platform-dependent. (Contributed by Christian Heimes in issue 11016.)

The module supports new ST_MODE flags, S_IFDOOR, S_IFPORT, and S_IFWHT. (Contributed by Christian
Hiemes in issue 11016.)

4.49 struct

New function iter_unpack and a new struct.Struct.iter_unpack() method on compiled formats pro-
vide streamed unpacking of a buffer containing repeated instances of a given format of data. (Contributed by Antoine
Pitrou in issue 17804.)

4.50 subprocess

check_output() now accepts an input argument that can be used to provide the contents of stdin for the com-
mand that is run. (Contributed by Zack Weinberg in issue 16624.)

getstatus() and getstatusoutput() now work on Windows. This change was actually inadvertently made
in 3.3.4. (Contributed by Tim Golden in issue 10197.)

4.51 sunau

The getparams() method now returns a namedtuple rather than a plain tuple. (Contributed by Claudiu Popa in
issue 18901.)

sunau.open() now supports the context management protocol: when used in a with block, the close method
of the returned object will be called automatically at the end of the block. (Contributed by Serhiy Storchaka in issue
18878.)

AU_write.setsampwidth() now supports 24 bit samples, thus adding support for writing 24 sample using the
module. (Contributed by Serhiy Storchaka in issue 19261.)

The writeframesraw() and writeframes() methods now accept any bytes-like object. (Contributed by Ser-
hiy Storchaka in issue 8311.)

4.52 sys

New function sys.getallocatedblocks() returns the current number of blocks allocated by the interpreter. (In
CPython with the default --with-pymalloc setting, this is allocations made through the PyObject_Malloc()

https://bugs.python.org/issue19292
https://bugs.python.org/issue17134
https://bugs.python.org/issue8109
https://bugs.python.org/issue18379
https://bugs.python.org/issue11016
https://bugs.python.org/issue11016
https://bugs.python.org/issue17804
https://bugs.python.org/issue16624
https://bugs.python.org/issue10197
https://bugs.python.org/issue18901
https://bugs.python.org/issue18878
https://bugs.python.org/issue18878
https://bugs.python.org/issue19261
https://bugs.python.org/issue8311

API.) This can be useful for tracking memory leaks, especially if automated via a test suite. (Contributed by Antoine
Pitrou in issue 13390.)

When the Python interpreter starts in interactive mode, it checks for an __interactivehook__ attribute on the
sys module. If the attribute exists, its value is called with no arguments just before interactive mode is started. The
check is made after the PYTHONSTARTUP file is read, so it can be set there. The sitemodule sets it to a function that
enables tab completion and history saving (in ~/.python-history) if the platform supports readline. If you
do not want this (new) behavior, you can override it in PYTHONSTARTUP, sitecustomize, or usercustomize
by deleting this attribute from sys (or setting it to some other callable). (Contributed by Éric Araujo and Antoine
Pitrou in issue 5845.)

4.53 tarfile

The tarfile module now supports a simple tarfile-commandline when called as a script directly or via -m. This can
be used to create and extract tarfile archives. (Contributed by Berker Peksag in issue 13477.)

4.54 textwrap

The TextWrapper class has two new attributes/constructor arguments: max_lines, which limits the number of
lines in the output, and placeholder, which is a string that will appear at the end of the output if it has been
truncated because of max_lines. Building on these capabilities, a new convenience function shorten() collapses
all of the whitespace in the input to single spaces and produces a single line of a given width that ends with the
placeholder (by default, [...]). (Contributed by Antoine Pitrou and Serhiy Storchaka in issue 18585 and issue
18725.)

4.55 threading

The Thread object representing the main thread can be obtained from the new main_thread() function. In
normal conditions this will be the thread from which the Python interpreter was started. (Contributed by Andrew
Svetlov in issue 18882.)

4.56 traceback

A new traceback.clear_frames() function takes a traceback object and clears the local variables in all of the
frames it references, reducing the amount of memory consumed. (Contributed by Andrew Kuchling in issue 1565525.)

4.57 types

A new DynamicClassAttribute() descriptor provides a way to define an attribute that acts normally when
looked up through an instance object, but which is routed to the class __getattr__ when looked up through the
class. This allows one to have properties active on a class, and have virtual attributes on the class with the same name
(see Enum for an example). (Contributed by Ethan Furman in issue 19030.)

4.58 urllib

urllib.request now supports data: URLs via the DataHandler class. (Contributed by Mathias Panzenböck
in issue 16423.)

The http method that will be used by a Request class can now be specified by setting a method class attribute on
the subclass. (Contributed by Jason R Coombs in issue 18978.)

https://bugs.python.org/issue13390
https://bugs.python.org/issue5845
https://bugs.python.org/issue13477
https://bugs.python.org/issue18585
https://bugs.python.org/issue18725
https://bugs.python.org/issue18725
https://bugs.python.org/issue18882
https://bugs.python.org/issue1565525
https://bugs.python.org/issue19030
https://bugs.python.org/issue16423
https://bugs.python.org/issue18978

Request objects are now reusable: if the full_url or data attributes are modified, all relevant internal prop-
erties are updated. This means, for example, that it is now possible to use the same Request object in more than
one OpenerDirector.open() call with different data arguments, or to modify a Request‘s url rather than
recomputing it from scratch. There is also a new remove_header() method that can be used to remove headers
from a Request. (Contributed by Alexey Kachayev in issue 16464, Daniel Wozniak in issue 17485, and Damien
Brecht and Senthil Kumaran in issue 17272.)

HTTPError objects now have a headers attribute that provides access to the HTTP response headers associated
with the error. (Contributed by Berker Peksag in issue 15701.)

4.59 unittest

The TestCase class has a new method, subTest(), that produces a context manager whose with block becomes
a “sub-test”. This context manager allows a test method to dynamically generate subtests by, say, calling the subTest
context manager inside a loop. A single test method can thereby produce an indefinite number of separately-identified
and separately-counted tests, all of which will run even if one or more of them fail. For example:

class NumbersTest(unittest.TestCase):
def test_even(self):

for i in range(6):
with self.subTest(i=i):

self.assertEqual(i % 2, 0)

will result in six subtests, each identified in the unittest verbose output with a label consisting of the variable name i
and a particular value for that variable (i=0, i=1, etc). See subtests for the full version of this example. (Contributed
by Antoine Pitrou in issue 16997.)

unittest.main() now accepts an iterable of test names for defaultTest, where previously it only accepted a single
test name as a string. (Contributed by Jyrki Pulliainen in issue 15132.)

If SkipTest is raised during test discovery (that is, at the module level in the test file), it is now reported as a skip
instead of an error. (Contributed by Zach Ware in issue 16935.)

discover() now sorts the discovered files to provide consistent test ordering. (Contributed by Martin Melin and
Jeff Ramnani in issue 16709.)

TestSuite now drops references to tests as soon as the test has been run, if the test is successful. On Python
interpreters that do garbage collection, this allows the tests to be garbage collected if nothing else is holding a ref-
erence to the test. It is possible to override this behavior by creating a TestSuite subclass that defines a cus-
tom _removeTestAtIndex method. (Contributed by Tom Wardill, Matt McClure, and Andrew Svetlov in issue
11798.)

A new test assertion context-manager, assertLogs(), will ensure that a given block of code emits a log message
using the logging module. By default the message can come from any logger and have a priority of INFO or higher,
but both the logger name and an alternative minimum logging level may be specified. The object returned by the
context manager can be queried for the LogRecords and/or formatted messages that were logged. (Contributed by
Antoine Pitrou in issue 18937.)

Test discovery now works with namespace packages (Contributed by Claudiu Popa in issue 17457.)

unittest.mock objects now inspect their specification signatures when matching calls, which means an argument
can now be matched by either position or name, instead of only by position. (Contributed by Antoine Pitrou in issue
17015.)

mock_open() objects now have readline and readlines methods. (Contributed by Toshio Kuratomi in issue
17467.)

https://bugs.python.org/issue16464
https://bugs.python.org/issue17485
https://bugs.python.org/issue17272
https://bugs.python.org/issue15701
https://bugs.python.org/issue16997
https://bugs.python.org/issue15132
https://bugs.python.org/issue16935
https://bugs.python.org/issue16709
https://bugs.python.org/issue11798
https://bugs.python.org/issue11798
https://bugs.python.org/issue18937
https://bugs.python.org/issue17457
https://bugs.python.org/issue17015
https://bugs.python.org/issue17015
https://bugs.python.org/issue17467
https://bugs.python.org/issue17467

4.60 venv

venv now includes activation scripts for the csh and fish shells. (Contributed by Andrew Svetlov in issue 15417.)

EnvBuilder and the create() convenience function take a new keyword argument with_pip, which defaults to
False, that controls whether or not EnvBuilder ensures that pip is installed in the virtual environment. (Con-
tributed by Nick Coghlan in issue 19552 as part of the PEP 453 implementation.)

4.61 wave

The getparams() method now returns a namedtuple rather than a plain tuple. (Contributed by Claudiu Popa in
issue 17487.)

wave.open() now supports the context management protocol. (Contributed by Claudiu Popa in issue 17616.)

wave can now write output to unseekable files. (Contributed by David Jones, Guilherme Polo, and Serhiy Storchaka
in issue 5202.)

The writeframesraw() and writeframes() methods now accept any bytes-like object. (Contributed by Ser-
hiy Storchaka in issue 8311.)

4.62 weakref

New WeakMethod class simulates weak references to bound methods. (Contributed by Antoine Pitrou in issue
14631.)

New finalize class makes it possible to register a callback to be invoked when an object is garbage collected,
without needing to carefully manage the lifecycle of the weak reference itself. (Contributed by Richard Oudkerk in
issue 15528.)

The callback, if any, associated with a ref is now exposed via the __callback__ attribute. (Contributed by Mark
Dickinson in issue 17643.)

4.63 xml.etree

A new parser, XMLPullParser, allows a non-blocking applications to parse XML documents. An example can be
seen at elementtree-pull-parsing. (Contributed by Antoine Pitrou in issue 17741.)

The xml.etree.ElementTree tostring() and tostringlist() functions, and the ElementTree
write() method, now have a short_empty_elements keyword-only parameter providing control over whether el-
ements with no content are written in abbreviated (<tag />) or expanded (<tag></tag>) form. (Contributed by
Ariel Poliak and Serhiy Storchaka in issue 14377.)

4.64 zipfile

The writepy() method of the PyZipFile class has a new filterfunc option that can be used to control which
directories and files are added to the archive. For example, this could be used to exclude test files from the archive.
(Contributed by Christian Tismer in issue 19274.)

The allowZip64 parameter to ZipFile and PyZipfile is now True by default. (Contributed by William Mallard
in issue 17201.)

https://bugs.python.org/issue15417
https://bugs.python.org/issue19552
http://www.python.org/dev/peps/pep-0453
https://bugs.python.org/issue17487
https://bugs.python.org/issue17616
https://bugs.python.org/issue5202
https://bugs.python.org/issue8311
https://bugs.python.org/issue14631
https://bugs.python.org/issue14631
https://bugs.python.org/issue15528
https://bugs.python.org/issue17643
https://bugs.python.org/issue17741
https://bugs.python.org/issue14377
https://bugs.python.org/issue19274
https://bugs.python.org/issue17201

5 CPython Implementation Changes

5.1 PEP 445: Customization of CPython Memory Allocators

PEP 445 adds new C level interfaces to customize memory allocation in the CPython interpreter.

See also:

PEP 445 – Add new APIs to customize Python memory allocators PEP written and implemented by Victor Stin-
ner.

5.2 PEP 442: Safe Object Finalization

PEP 442 removes the current limitations and quirks of object finalization in CPython. With it, objects with
__del__() methods, as well as generators with finally clauses, can be finalized when they are part of a ref-
erence cycle.

As part of this change, module globals are no longer forcibly set to None during interpreter shutdown in most cases,
instead relying on the normal operation of the cyclic garbage collector. This avoids a whole class of interpreter-
shutdown-time errors, usually involving __del__ methods, that have plagued Python since the cyclic GC was first
introduced.

See also:

PEP 442 – Safe object finalization PEP written and implemented by Antoine Pitrou.

5.3 PEP 456: Secure and Interchangeable Hash Algorithm

PEP 456 follows up on earlier security fix work done on Python’s hash algorithm to address certain DOS attacks to
which public facing APIs backed by dictionary lookups may be subject. (See issue 14621 for the start of the current
round of improvements.) The PEP unifies CPython’s hash code to make it easier for a packager to substitute a different
hash algorithm, and switches Python’s default implementation to a SipHash implementation on platforms that have a
64 bit data type. Any performance differences in comparison with the older FNV algorithm are trivial.

The PEP adds additional fields to the sys.hash_info struct sequence to describe the hash algorithm in use by the
currently executing binary. Otherwise, the PEP does not alter any existing CPython APIs.

5.4 PEP 436: Argument Clinic

“Argument Clinic” (PEP 436) is now part of the CPython build process and can be used to simplify the process of
defining and maintaining accurate signatures for builtins and standard library extension modules implemented in C.

Some standard library extension modules have been converted to use Argument Clinic in Python 3.4, and pydoc and
inspect have been updated accordingly.

It is expected that signature metadata for programmatic introspection will be added to additional callables implemented
in C as part of Python 3.4 maintenance releases.

Note: The Argument Clinic PEP is not fully up to date with the state of the implementation. This has been deemed
acceptable by the release manager and core development team in this case, as Argument Clinic will not be made
available as a public API for third party use in Python 3.4.

See also:

PEP 436 – The Argument Clinic DSL PEP written and implemented by Larry Hastings.

http://www.python.org/dev/peps/pep-0445
http://www.python.org/dev/peps/pep-0445
http://www.python.org/dev/peps/pep-0442
http://www.python.org/dev/peps/pep-0442
http://www.python.org/dev/peps/pep-0456
https://bugs.python.org/issue14621
http://www.python.org/dev/peps/pep-0436
http://www.python.org/dev/peps/pep-0436

5.5 Other Build and C API Changes

• The new PyType_GetSlot() function has been added to the stable ABI, allowing retrieval of function
pointers from named type slots when using the limited API. (Contributed by Martin von Löwis in issue 17162.)

• The new Py_SetStandardStreamEncoding() pre-initialization API allows applications embedding the
CPython interpreter to reliably force a particular encoding and error handler for the standard streams. (Con-
tributed by Bastien Montagne and Nick Coghlan in issue 16129.)

• Most Python C APIs that don’t mutate string arguments are now correctly marked as accepting const char

* rather than char *. (Contributed by Serhiy Storchaka in issue 1772673.)

• A new shell version of python-config can be used even when a python interpreter is not available (for
example, in cross compilation scenarios).

• PyUnicode_FromFormat() now supports width and precision specifications for %s, %A, %U, %V, %S, and
%R. (Contributed by Ysj Ray and Victor Stinner in issue 7330.)

• New function PyStructSequence_InitType2() supplements the existing
PyStructSequence_InitType() function. The difference is that it returns 0 on success and -1
on failure.

• The CPython source can now be compiled using the address sanity checking features of recent versions of GCC
and clang: the false alarms in the small object allocator have been silenced. (Contributed by Dhiru Kholia in
issue 18596.)

• The Windows build now uses Address Space Layout Randomization and Data Execution Prevention. (Con-
tributed by Christian Heimes in issue 16632.)

• New function PyObject_LengthHint() is the C API equivalent of operator.length_hint().
(Contributed by Armin Ronacher in issue 16148.)

5.6 Other Improvements

• The python command has a new option, -I, which causes it to run in “isolated mode”, which means that
sys.path contains neither the script’s directory nor the user’s site-packages directory, and all PYTHON*
environment variables are ignored (it implies both -s and -E). Other restrictions may also be applied in the
future, with the goal being to isolate the execution of a script from the user’s environment. This is appropriate,
for example, when Python is used to run a system script. On most POSIX systems it can and should be used in
the #! line of system scripts. (Contributed by Christian Heimes in issue 16499.)

• Tab-completion is now enabled by default in the interactive interpreter on systems that support readline. His-
tory is also enabled by default, and is written to (and read from) the file ~/.python-history. (Contributed
by Antoine Pitrou and Éric Araujo in issue 5845.)

• Invoking the Python interpreter with --version now outputs the version to standard output instead of standard
error (issue 18338). Similar changes were made to argparse (issue 18920) and other modules that have script-
like invocation capabilities (issue 18922).

• The CPython Windows installer now adds .py to the PATHEXT variable when extensions are registered, al-
lowing users to run a python script at the windows command prompt by just typing its name without the .py
extension. (Contributed by Paul Moore in issue 18569.)

• A new make target coverage-report will build python, run the test suite, and generate an HTML coverage report
for the C codebase using gcov and lcov.

• The -R option to the python regression test suite now also checks for memory allocation leaks, using
sys.getallocatedblocks(). (Contributed by Antoine Pitrou in issue 13390.)

• python -m now works with namespace packages.

https://bugs.python.org/issue17162
https://bugs.python.org/issue16129
https://bugs.python.org/issue1772673
https://bugs.python.org/issue7330
https://bugs.python.org/issue18596
http://en.wikipedia.org/wiki/ASLR
http://en.wikipedia.org/wiki/Data_Execution_Prevention
https://bugs.python.org/issue16632
https://bugs.python.org/issue16148
https://bugs.python.org/issue16499
https://bugs.python.org/issue5845
https://bugs.python.org/issue18338
https://bugs.python.org/issue18920
https://bugs.python.org/issue18922
https://bugs.python.org/issue18569
https://docs.python.org/devguide/coverage.html#measuring-coverage-of-c-code-with-gcov-and-lcov
http://ltp.sourceforge.net/coverage/lcov.php
https://bugs.python.org/issue13390

• The stat module is now implemented in C, which means it gets the values for its constants from the C header
files, instead of having the values hard-coded in the python module as was previously the case.

• Loading multiple python modules from a single OS module (.so, .dll) now works correctly (previously it
silently returned the first python module in the file). (Contributed by Václav Šmilauer in issue 16421.)

• A new opcode, LOAD_CLASSDEREF, has been added to fix a bug in the loading of free variables in class bodies
that could be triggered by certain uses of __prepare__. (Contributed by Benjamin Peterson in issue 17853.)

• A number of MemoryError-related crashes were identified and fixed by Victor Stinner using his PEP 445-based
pyfailmalloc tool (issue 18408, issue 18520).

• The pyvenv command now accepts a --copies option to use copies rather than symlinks even on systems
where symlinks are the default. (Contributed by Vinay Sajip in issue 18807.)

• The pyvenv command also accepts a --without-pip option to suppress the otherwise-automatic bootstrap-
ping of pip into the virtual environment. (Contributed by Nick Coghlan in issue 19552 as part of the PEP 453
implementation.)

• The encoding name is now optional in the value set for the PYTHONIOENCODING environment variable. This
makes it possible to set just the error handler, without changing the default encoding. (Contributed by Serhiy
Storchaka in issue 18818.)

• The bz2, lzma, and gzip module open functions now support x (exclusive creation) mode. (Contributed by
Tim Heaney and Vajrasky Kok in issue 19201, issue 19222, and issue 19223.)

5.7 Significant Optimizations

• The UTF-32 decoder is now 3x to 4x faster. (Contributed by Serhiy Storchaka in issue 14625.)

• The cost of hash collisions for sets is now reduced. Each hash table probe now checks a series of consecutive,
adjacent key/hash pairs before continuing to make random probes through the hash table. This exploits cache
locality to make collision resolution less expensive. The collision resolution scheme can be described as a hybrid
of linear probing and open addressing. The number of additional linear probes defaults to nine. This can be
changed at compile-time by defining LINEAR_PROBES to be any value. Set LINEAR_PROBES=0 to turn-off
linear probing entirely. (Contributed by Raymond Hettinger in issue 18771.)

• The interpreter starts about 30% faster. A couple of measures lead to the speedup. The interpreter loads fewer
modules on startup, e.g. the re, collections and locale modules and their dependencies are no longer
imported by default. The marshal module has been improved to load compiled Python code faster. (Contributed
by Antoine Pitrou, Christian Heimes and Victor Stinner in issue 19219, issue 19218, issue 19209, issue 19205
and issue 9548.)

• bz2.BZ2File is now as fast or faster than the Python2 version for most cases. lzma.LZMAFile has also
been optimized. (Contributed by Serhiy Storchaka and Nadeem Vawda in issue 16034.)

• random.getrandbits() is 20%-40% faster for small integers (the most common use case). (Contributed
by Serhiy Storchaka in issue 16674.)

• By taking advantage of the new storage format for strings, pickling of strings is now significantly faster. (Con-
tributed by Victor Stinner and Antoine Pitrou in issue 15596.)

• A performance issue in io.FileIO.readall() has been solved. This particularly affects Windows, and
significantly speeds up the case of piping significant amounts of data through subprocess. (Contributed by
Richard Oudkerk in issue 15758.)

• html.escape() is now 10x faster. (Contributed by Matt Bryant in issue 18020.)

• On Windows, the native VirtualAlloc is now used instead of the CRT malloc in obmalloc. Artificial
benchmarks show about a 3% memory savings.

https://bugs.python.org/issue16421
https://bugs.python.org/issue17853
http://www.python.org/dev/peps/pep-0445
https://bugs.python.org/issue18408
https://bugs.python.org/issue18520
https://bugs.python.org/issue18807
https://bugs.python.org/issue19552
http://www.python.org/dev/peps/pep-0453
https://bugs.python.org/issue18818
https://bugs.python.org/issue19201
https://bugs.python.org/issue19222
https://bugs.python.org/issue19223
https://bugs.python.org/issue14625
https://bugs.python.org/issue18771
https://bugs.python.org/issue19219
https://bugs.python.org/issue19218
https://bugs.python.org/issue19209
https://bugs.python.org/issue19205
https://bugs.python.org/issue9548
https://bugs.python.org/issue16034
https://bugs.python.org/issue16674
https://bugs.python.org/issue15596
https://bugs.python.org/issue15758
https://bugs.python.org/issue18020

• os.urandom() now uses a lazily-opened persistent file descriptor so as to avoid using many file descriptors
when run in parallel from multiple threads. (Contributed by Antoine Pitrou in issue 18756.)

6 Deprecated

This section covers various APIs and other features that have been deprecated in Python 3.4, and will be removed in
Python 3.5 or later. In most (but not all) cases, using the deprecated APIs will produce a DeprecationWarning
when the interpreter is run with deprecation warnings enabled (for example, by using -Wd).

6.1 Deprecations in the Python API

• As mentioned in PEP 451: A ModuleSpec Type for the Import System, a number of importilb
methods and functions are deprecated: importlib.find_loader() is replaced by
importlib.util.find_spec(); importlib.machinery.PathFinder.find_module()
is replaced by importlib.machinery.PathFinder.find_spec();
importlib.abc.MetaPathFinder.find_module() is replaced by
importlib.abc.MetaPathFinder.find_spec(); importlib.abc.PathEntryFinder.find_loader()
and find_module() are replaced by importlib.abc.PathEntryFinder.find_spec();
all of the xxxLoader ABC load_module methods (importlib.abc.Loader.load_module(),
importlib.abc.InspectLoader.load_module(), importlib.abc.FileLoader.load_module(),
importlib.abc.SourceLoader.load_module()) should no longer be implemented, instead
loaders should implement an exec_module method (importlib.abc.Loader.exec_module(),
importlib.abc.InspectLoader.exec_module() importlib.abc.SourceLoader.exec_module())
and let the import system take care of the rest; and importlib.abc.Loader.module_repr(),
importlib.util.module_for_loader(), importlib.util.set_loader(), and
importlib.util.set_package() are no longer needed because their functions are now handled
automatically by the import system.

• The imp module is pending deprecation. To keep compatibility with Python 2/3 code bases, the module’s
removal is currently not scheduled.

• The formatter module is pending deprecation and is slated for removal in Python 3.6.

• MD5 as the default digestmod for the hmac.new() function is deprecated. Python 3.6 will require an explicit
digest name or constructor as digestmod argument.

• The internal Netrc class in the ftplib module has been documented as deprecated in its docstring for quite
some time. It now emits a DeprecationWarning and will be removed completely in Python 3.5.

• The undocumented endtime argument to subprocess.Popen.wait() should not have been exposed and
is hopefully not in use; it is deprecated and will mostly likely be removed in Python 3.5.

• The strict argument of HTMLParser is deprecated.

• The plistlib readPlist(), writePlist(), readPlistFromBytes(), and
writePlistToBytes() functions are deprecated in favor of the corresponding new functions load(),
dump(), loads(), and dumps(). Data() is deprecated in favor of just using the bytes constructor.

• The sysconfig key SO is deprecated, it has been replaced by EXT_SUFFIX.

• The U mode accepted by various open functions is deprecated. In Python3 it does not do anything useful, and
should be replaced by appropriate uses of io.TextIOWrapper (if needed) and its newline argument.

• The parser argument of xml.etree.ElementTree.iterparse() has been deprecated, as has the html
argument of XMLParser(). To prepare for the removal of the latter, all arguments to XMLParser should be
passed by keyword.

https://bugs.python.org/issue18756

6.2 Deprecated Features

• Running idle with the -n flag (no subprocess) is deprecated. However, the feature will not be removed until
issue 18823 is resolved.

• The site module adding a “site-python” directory to sys.path, if it exists, is deprecated (issue 19375).

7 Removed

7.1 Operating Systems No Longer Supported

Support for the following operating systems has been removed from the source and build tools:

• OS/2 (issue 16135).

• Windows 2000 (changeset e52df05b496a).

• Windows systems where COMSPEC points to command.com (issue 14470).

• VMS (issue 16136).

7.2 API and Feature Removals

The following obsolete and previously deprecated APIs and features have been removed:

• The unmaintained Misc/TextMate and Misc/vim directories have been removed (see the devguide for
suggestions on what to use instead).

• The SO makefile macro is removed (it was replaced by the SHLIB_SUFFIX and EXT_SUFFIX macros) (issue
16754).

• The PyThreadState.tick_counter field has been removed; its value has been meaningless since Python
3.2, when the “new GIL” was introduced (issue 19199).

• PyLoader and PyPycLoader have been removed from importlib. (Contributed by Taras Lyapun in issue
15641.)

• The strict argument to HTTPConnection and HTTPSConnection has been removed. HTTP 0.9-style
“Simple Responses” are no longer supported.

• The deprecated urllib.request.Request getter and setter methods add_data, has_data,
get_data, get_type, get_host, get_selector, set_proxy, get_origin_req_host, and
is_unverifiable have been removed (use direct attribute access instead).

• Support for loading the deprecated TYPE_INT64 has been removed from marshal. (Contributed by Dan Riti
in issue 15480.)

• inspect.Signature: positional-only parameters are now required to have a valid name.

• object.__format__() no longer accepts non-empty format strings, it now raises a TypeError instead.
Using a non-empty string has been deprecated since Python 3.2. This change has been made to prevent a
situation where previously working (but incorrect) code would start failing if an object gained a __format__
method, which means that your code may now raise a TypeError if you are using an ’s’ format code with
objects that do not have a __format__ method that handles it. See issue 7994 for background.

• difflib.SequenceMatcher.isbjunk() and difflib.SequenceMatcher.isbpopular()
were deprecated in 3.2, and have now been removed: use x in sm.bjunk and x in sm.bpopular,
where sm is a SequenceMatcher object (issue 13248).

https://bugs.python.org/issue18823
https://bugs.python.org/issue19375
https://bugs.python.org/issue16135
https://bugs.python.org/issue14470
https://bugs.python.org/issue16136
https://docs.python.org/devguide
https://bugs.python.org/issue16754
https://bugs.python.org/issue16754
https://bugs.python.org/issue19199
https://bugs.python.org/issue15641
https://bugs.python.org/issue15641
https://bugs.python.org/issue15480
https://bugs.python.org/issue7994
https://bugs.python.org/issue13248

7.3 Code Cleanups

• The unused and undocumented internal Scanner class has been removed from the pydoc module.

• The private and effectively unused _gestalt module has been removed, along with the private platform
functions _mac_ver_lookup, _mac_ver_gstalt, and _bcd2str, which would only have ever been
called on badly broken OSX systems (see issue 18393).

• The hardcoded copies of certain stat constants that were included in the tarfile module namespace have
been removed.

8 Porting to Python 3.4

This section lists previously described changes and other bugfixes that may require changes to your code.

8.1 Changes in ‘python’ Command Behavior

• In a posix shell, setting the PATH environment variable to an empty value is equivalent to not setting it at
all. However, setting PYTHONPATH to an empty value was not equivalent to not setting it at all: setting
PYTHONPATH to an empty value was equivalent to setting it to ., which leads to confusion when reasoning by
analogy to how PATH works. The behavior now conforms to the posix convention for PATH.

• The [X refs, Y blocks] output of a debug (--with-pydebug) build of the CPython interpreter is now off
by default. It can be re-enabled using the -X showrefcount option. (Contributed by Ezio Melotti in issue
17323.)

• The python command and most stdlib scripts (as well as argparse) now output --version information to
stdout instead of stderr (for issue list see Other Improvements above).

8.2 Changes in the Python API

• The ABCs defined in importlib.abc now either raise the appropriate exception or return a default value
instead of raising NotImplementedError blindly. This will only affect code calling super() and falling
through all the way to the ABCs. For compatibility, catch both NotImplementedError or the appropriate
exception as needed.

• The module type now initializes the __package__ and __loader__ attributes to None by default. To
determine if these attributes were set in a backwards-compatible fashion, use e.g. getattr(module,
’__loader__’, None) is not None. (issue 17115.)

• importlib.util.module_for_loader() now sets __loader__ and __package__ uncondition-
ally to properly support reloading. If this is not desired then you will need to set these attributes manually. You
can use importlib.util.module_to_load() for module management.

• Import now resets relevant attributes (e.g. __name__, __loader__, __package__, __file__,
__cached__) unconditionally when reloading. Note that this restores a pre-3.3 behavior in that it means
a module is re-found when re-loaded (issue 19413).

• Frozen packages no longer set __path__ to a list containing the package name, they now set it to an empty
list. The previous behavior could cause the import system to do the wrong thing on submodule imports if there
was also a directory with the same name as the frozen package. The correct way to determine if a module is a
package or not is to use hasattr(module, ’__path__’) (issue 18065).

https://bugs.python.org/issue18393
https://bugs.python.org/issue17323
https://bugs.python.org/issue17323
https://bugs.python.org/issue17115
https://bugs.python.org/issue19413
https://bugs.python.org/issue18065

• Frozen modules no longer define a __file__ attribute. It’s semantically incorrect for frozen modules to set
the attribute as they are not loaded from any explicit location. If you must know that a module comes from
frozen code then you can see if the module’s __spec__.location is set to ’frozen’, check if the loader
is a subclass of importlib.machinery.FrozenImporter, or if Python 2 compatibility is necessary
you can use imp.is_frozen().

• py_compile.compile() now raises FileExistsError if the file path it would write to is a symlink or
a non-regular file. This is to act as a warning that import will overwrite those files with a regular file regardless
of what type of file path they were originally.

• importlib.abc.SourceLoader.get_source() no longer raises ImportError when the source
code being loaded triggers a SyntaxError or UnicodeDecodeError. As ImportError is meant to be
raised only when source code cannot be found but it should, it was felt to be over-reaching/overloading of that
meaning when the source code is found but improperly structured. If you were catching ImportError before and
wish to continue to ignore syntax or decoding issues, catch all three exceptions now.

• functools.update_wrapper() and functools.wraps() now correctly set the __wrapped__ at-
tribute to the function being wrapped, even if that function also had its __wrapped__ attribute set. This means
__wrapped__ attributes now correctly link a stack of decorated functions rather than every __wrapped__
attribute in the chain referring to the innermost function. Introspection libraries that assumed the previous be-
haviour was intentional can use inspect.unwrap() to access the first function in the chain that has no
__wrapped__ attribute.

• inspect.getfullargspec() has been reimplemented on top of inspect.signature() and hence
handles a much wider variety of callable objects than it did in the past. It is expected that additional builtin
and extension module callables will gain signature metadata over the course of the Python 3.4 series. Code
that assumes that inspect.getfullargspec() will fail on non-Python callables may need to be adjusted
accordingly.

• importlib.machinery.PathFinder now passes on the current working directory to objects in
sys.path_hooks for the empty string. This results in sys.path_importer_cache never contain-
ing ’’, thus iterating through sys.path_importer_cache based on sys.path will not find all keys. A
module’s __file__ when imported in the current working directory will also now have an absolute path, in-
cluding when using -mwith the interpreter (except for __main__.__file__when a script has been executed
directly using a relative path) (Contributed by Brett Cannon in issue 18416). is specified on the command-line)
(issue 18416).

• The removal of the strict argument to HTTPConnection and HTTPSConnection changes the meaning
of the remaining arguments if you are specifying them positionally rather than by keyword. If you’ve been
paying attention to deprecation warnings your code should already be specifying any additional arguments via
keywords.

• Strings between from __future__ import ... statements now always raise a SyntaxError. Previ-
ously if there was no leading docstring, an interstitial string would sometimes be ignored. This brings CPython
into compliance with the language spec; Jython and PyPy already were. (issue 17434).

• ssl.SSLSocket.getpeercert() and ssl.SSLSocket.do_handshake() now raise an OSError
with ENOTCONN when the SSLSocket is not connected, instead of the previous behavior of raising an
AttributeError. In addition, getpeercert() will raise a ValueError if the handshake has not
yet been done.

• base64.b32decode() now raises a binascii.Error when the input string contains non-b32-alphabet
characters, instead of a TypeError. This particular TypeError was missed when the other TypeErrors
were converted. (Contributed by Serhiy Storchaka in issue 18011.) Note: this change was also inadvertently
applied in Python 3.3.3.

• The file attribute is now automatically closed when the creating cgi.FieldStorage instance is garbage
collected. If you were pulling the file object out separately from the cgi.FieldStorage instance and not

https://bugs.python.org/issue18416
https://bugs.python.org/issue18416
https://bugs.python.org/issue17434
https://bugs.python.org/issue18011

keeping the instance alive, then you should either store the entire cgi.FieldStorage instance or read the
contents of the file before the cgi.FieldStorage instance is garbage collected.

• Calling read or write on a closed SSL socket now raises an informative ValueError rather than the
previous more mysterious AttributeError (issue 9177).

• slice.indices() no longer produces an OverflowError for huge values. As a consequence of this fix,
slice.indices() now raises a ValueError if given a negative length; previously it returned nonsense
values (issue 14794).

• The complex constructor, unlike the cmath functions, was incorrectly accepting float values if an object’s
__complex__ special method returned one. This now raises a TypeError. (issue 16290.)

• The int constructor in 3.2 and 3.3 erroneously accepts float values for the base parameter. It is unlikely
anyone was doing this, but if so, it will now raise a TypeError (issue 16772).

• Defaults for keyword-only arguments are now evaluated after defaults for regular keyword arguments, instead
of before. Hopefully no one wrote any code that depends on the previous buggy behavior (issue 16967).

• Stale thread states are now cleared after fork(). This may cause some system resources to be released that pre-
viously were incorrectly kept perpetually alive (for example, database connections kept in thread-local storage).
(issue 17094.)

• Parameter names in __annotations__ dicts are now mangled properly, similarly to __kwdefaults__.
(Contributed by Yury Selivanov in issue 20625.)

• hashlib.hash.name now always returns the identifier in lower case. Previously some builtin hashes had
uppercase names, but now that it is a formal public interface the naming has been made consistent (issue 18532).

• Because unittest.TestSuite now drops references to tests after they are run, test harnesses that re-use
a TestSuite to re-run a set of tests may fail. Test suites should not be re-used in this fashion since it means
state is retained between test runs, breaking the test isolation that unittest is designed to provide. However,
if the lack of isolation is considered acceptable, the old behavior can be restored by creating a TestSuite
subclass that defines a _removeTestAtIndex method that does nothing (see TestSuite.__iter__())
(issue 11798).

• unittest now uses argparse for command line parsing. There are certain invalid command forms that
used to work that are no longer allowed; in theory this should not cause backward compatibility issues since the
disallowed command forms didn’t make any sense and are unlikely to be in use.

• The re.split(), re.findall(), and re.sub() functions, and the group() and groups() methods
of match objects now always return a bytes object when the string to be matched is a bytes-like object. Pre-
viously the return type matched the input type, so if your code was depending on the return value being, say, a
bytearray, you will need to change your code.

• audioop functions now raise an error immediately if passed string input, instead of failing randomly later on
(issue 16685).

• The new convert_charrefs argument to HTMLParser currently defaults to False for backward compatibility,
but will eventually be changed to default to True. It is recommended that you add this keyword, with the
appropriate value, to any HTMLParser calls in your code (issue 13633).

• Since the digestmod argument to the hmac.new() function will in the future have no default, all calls to
hmac.new() should be changed to explicitly specify a digestmod (issue 17276).

• Calling sysconfig.get_config_var() with the SO key, or looking SO up in the results of a call
to sysconfig.get_config_vars() is deprecated. This key should be replaced by EXT_SUFFIX or
SHLIB_SUFFIX, depending on the context (issue 19555).

• Any calls to open functions that specify U should be modified. U is ineffective in Python3 and will eventually
raise an error if used. Depending on the function, the equivalent of its old Python2 behavior can be achieved

https://bugs.python.org/issue9177
https://bugs.python.org/issue14794
https://bugs.python.org/issue16290
https://bugs.python.org/issue16772
https://bugs.python.org/issue16967
https://bugs.python.org/issue17094
https://bugs.python.org/issue20625
https://bugs.python.org/issue18532
https://bugs.python.org/issue11798
https://bugs.python.org/issue16685
https://bugs.python.org/issue13633
https://bugs.python.org/issue17276
https://bugs.python.org/issue19555

using either a newline argument, or if necessary by wrapping the stream in TextIOWrapper to use its newline
argument (issue 15204).

• If you use pyvenv in a script and desire that pip not be installed, you must add --without-pip to your
command invocation.

• The default behavior of json.dump() and json.dumps() when an indent is specified has changed: it no
longer produces trailing spaces after the item separating commas at the ends of lines. This will matter only if
you have tests that are doing white-space-sensitive comparisons of such output (issue 16333).

• doctest now looks for doctests in extension module __doc__ strings, so if your doctest test discovery
includes extension modules that have things that look like doctests in them you may see test failures you’ve
never seen before when running your tests (issue 3158).

• The collections.abc module has been slightly refactored as part of the Python startup improvements.
As a consequence of this, it is no longer the case that importing collections automatically imports
collections.abc. If your program depended on the (undocumented) implicit import, you will need to
add an explicit import collections.abc (issue 20784).

8.3 Changes in the C API

• PyEval_EvalFrameEx(), PyObject_Repr(), and PyObject_Str(), along with some other internal
C APIs, now include a debugging assertion that ensures they are not used in situations where they may silently
discard a currently active exception. In cases where discarding the active exception is expected and desired (for
example, because it has already been saved locally with PyErr_Fetch() or is being deliberately replaced
with a different exception), an explicit PyErr_Clear() call will be needed to avoid triggering the assertion
when invoking these operations (directly or indirectly) and running against a version of Python that is compiled
with assertions enabled.

• PyErr_SetImportError() now sets TypeError when its msg argument is not set. Previously only
NULL was returned with no exception set.

• The result of the PyOS_ReadlineFunctionPointer callback must now be a string allocated by
PyMem_RawMalloc() or PyMem_RawRealloc(), or NULL if an error occurred, instead of a string al-
located by PyMem_Malloc() or PyMem_Realloc() (issue 16742)

• PyThread_set_key_value() now always set the value. In Python 3.3, the function did nothing if the key
already exists (if the current value is a non-NULL pointer).

• The f_tstate (thread state) field of the PyFrameObject structure has been removed to fix a bug: see issue
14432 for the rationale.

9 Changed in 3.4.3

9.1 PEP 476: Enabling certificate verification by default for stdlib http clients

http.client and modules which use it, such as urllib.request and xmlrpc.client, will now verify that
the server presents a certificate which is signed by a CA in the platform trust store and whose hostname matches the
hostname being requested by default, significantly improving security for many applications.

For applications which require the old previous behavior, they can pass an alternate context:

import urllib.request
import ssl

This disables all verification

https://bugs.python.org/issue15204
https://bugs.python.org/issue16333
https://bugs.python.org/issue3158
https://bugs.python.org/issue20784
https://bugs.python.org/issue16742
https://bugs.python.org/issue14432
https://bugs.python.org/issue14432

context = ssl._create_unverified_context()

This allows using a specific certificate for the host, which doesn't need
to be in the trust store
context = ssl.create_default_context(cafile="/path/to/file.crt")

urllib.request.urlopen("https://invalid-cert", context=context)

Index

E
environment variable

PATH, 30
PATHEXT, 26
PYTHON*, 26
PYTHONIOENCODING, 27
PYTHONPATH, 30
PYTHONSTARTUP, 22

P
PATH, 30
PATHEXT, 26
Python Enhancement Proposals

PEP 247, 14
PEP 3154, 4, 18
PEP 3156, 3, 4, 8, 9
PEP 424, 8, 17
PEP 428, 4, 9
PEP 429, 3
PEP 435, 4, 9
PEP 436, 4, 25
PEP 442, 4, 25
PEP 443, 4, 13
PEP 445, 4, 25, 27
PEP 446, 3, 4, 6
PEP 450, 4, 9
PEP 451, 3, 7
PEP 453, 3–5, 8, 24, 27
PEP 454, 4, 9, 10
PEP 456, 4, 25

PYTHON*, 26
PYTHONIOENCODING, 27
PYTHONPATH, 30
PYTHONSTARTUP, 22

35

	Summary – Release Highlights
	New Features
	PEP 453: Explicit Bootstrapping of PIP in Python Installations
	Bootstrapping pip By Default
	Documentation Changes

	PEP 446: Newly Created File Descriptors Are Non-Inheritable
	Improvements to Codec Handling
	PEP 451: A ModuleSpec Type for the Import System
	Other Language Changes

	New Modules
	asyncio
	ensurepip
	enum
	pathlib
	selectors
	statistics
	tracemalloc

	Improved Modules
	abc
	aifc
	argparse
	audioop
	base64
	collections
	colorsys
	contextlib
	dbm
	dis
	doctest
	email
	filecmp
	functools
	gc
	glob
	hashlib
	hmac
	html
	http
	idlelib and IDLE
	importlib
	inspect
	ipaddress
	logging
	marshal
	mmap
	multiprocessing
	operator
	os
	pdb
	pickle
	plistlib
	poplib
	pprint
	pty
	pydoc
	re
	resource
	select
	shelve
	shutil
	smtpd
	smtplib
	socket
	sqlite3
	ssl
	stat
	struct
	subprocess
	sunau
	sys
	tarfile
	textwrap
	threading
	traceback
	types
	urllib
	unittest
	venv
	wave
	weakref
	xml.etree
	zipfile

	CPython Implementation Changes
	PEP 445: Customization of CPython Memory Allocators
	PEP 442: Safe Object Finalization
	PEP 456: Secure and Interchangeable Hash Algorithm
	PEP 436: Argument Clinic
	Other Build and C API Changes
	Other Improvements
	Significant Optimizations

	Deprecated
	Deprecations in the Python API
	Deprecated Features

	Removed
	Operating Systems No Longer Supported
	API and Feature Removals
	Code Cleanups

	Porting to Python 3.4
	Changes in `python' Command Behavior
	Changes in the Python API
	Changes in the C API

	Changed in 3.4.3
	PEP 476: Enabling certificate verification by default for stdlib http clients

	Index

