Porting Extension Modules to Pythog

Release 3.4.3

Guido van Rossum
and the Python development team

July 14, 2015

Python Software Foundation
Email: docs@python.org

Contents
1 Conditional compilation 1
2 Changes to Object APIs 2
2.1 str/unicode Unification 0 e e e e e e e e e e 2
2.2 long/int Unification e e e e 2
3 Module initialization and state 3
4 CObject replaced with Capsule 4
5 Other options 7
Index 8

author Benjamin Peterson

Abstract

Although changing the C-API was not one of Python 3’s objectives, the many Python-level changes made
leaving Python 2’s API intact impossible. In fact, some changes such as int () and long () unification
are more obvious on the C level. This document endeavors to document incompatibilities and how they can
be worked around.

1 Conditional compilation

The easiest way to compile only some code for Python 3 is to check if PY_ MAJOR_VERSION is greater than or
equal to 3.

#1f PY MAJOR _VERSION >= 3
#define IS PY3K
#endif

API functions that are not present can be aliased to their equivalents within conditional blocks.

2 Changes to Object APIs

Python 3 merged together some types with similar functions while cleanly separating others.

2.1 str/unicode Unification

Python 3’s str () type is equivalent to Python 2’s unicode () ; the C functions are called PyUnicode_* for
both. The old 8-bit string type has become bytes (), with C functions called PyBytes_ x. Python 2.6 and later
provide a compatibility header, bytesobject .h, mapping PyBytes names to PyString ones. For best
compatibility with Python 3, PyUnicode should be used for textual data and PyBytes for binary data. It’s also
important to remember that PyBytes and PyUnicode in Python 3 are not interchangeable like PyString
and PyUnicode are in Python 2. The following example shows best practices with regards to PyUnicode,
PyString, and PyBytes.

#include "stdlib.h"
#include "Python.h"
#include "bytesobject.h"

/+ text example */

static PyObject =

say_hello (PyObject =xself, PyObject =*args) {
PyObject xname, =xresult;

if (!PyArg_ParseTuple (args, "U:say_hello", &name))
return NULL;

result = PyUnicode_FromFormat ("Hello, %S!", name);
return result;

/* just a forward */
static char % do_encode (PyObject =*);

/+* bytes example x/

static PyObject =

encode_object (PyObject =xself, PyObject xargs) {
char xencoded;
PyObject xresult, »*myobij;

if (!PyArg_ParseTuple (args, "O:encode_object", &myobi))
return NULL;

encoded = do_encode (myobij) ;
if (encoded == NULL)
return NULL;
result = PyBytes_FromString(encoded);
free (encoded) ;
return result;

2.2 long/int Unification

Python 3 has only one integer type, int (). But it actually corresponds to Python 2’s 1ong () type—-the int ()
type used in Python 2 was removed. In the C-APIL, PyInt_* functions are replaced by their PyLong_* equiva-
lents.

3 Module initialization and state

Python 3 has a revamped extension module initialization system. (See PEP 3121.) Instead of storing module state
in globals, they should be stored in an interpreter specific structure. Creating modules that act correctly in both
Python 2 and Python 3 is tricky. The following simple example demonstrates how.

#include "Python.h"

struct module_state {
PyObject *error;
bi

#1f PY MAJOR _VERSION >= 3

#define GETSTATE (m) ((struct module_statex)PyModule_ GetState (m))
#else

#define GETSTATE (m) (&_state)

static struct module_state _state;

#endif

static PyObject =

error_out (PyObject xm) {
struct module_state *st = GETSTATE (m);
PyErr_SetString(st->error, "something bad happened");
return NULL;

static PyMethodDef myextension_methods[] = {
{"error_out", (PyCFunction)error_out, METH_NOARGS, NULL},
{NULL, NULL}

}i

#if PY MAJOR VERSION >= 3

static int myextension_traverse (PyObject »*m, visitproc visit, wvoid *arg) {
Py_VISIT (GETSTATE (m) —>error);
return 0;

static int myextension_clear (PyObject »xm) {
Py_CLEAR (GETSTATE (m) —>error) ;
return 0;

static struct PyModuleDef moduledef = ({
PyModuleDef_ HEAD_INIT,
"myextension",
NULL,
sizeof (struct module_state),
mnyextension_methods,
NULL,

http://www.python.org/dev/peps/pep-3121

myextension_traverse,
myextension_clear,
NULL

}i

#define INITERROR return NULL

PyObject =
PyInit_myextension (void)

#else
#define INITERROR return

void
initmyextension (void)
#endif
{
#1f PY MAJOR _VERSION >= 3
PyObject smodule = PyModule_Create (&moduledef);

#else

PyObject smodule = Py_InitModule ("myextension", myextension_methods);
#endif

if (module == NULL)

INITERROR;
struct module_state *st = GETSTATE (module) ;

st->error = PyErr_NewException ("myextension.Error", NULL, NULL);
if (st->error == NULL) {

Py_DECREF (module) ;

INITERROR;

#1f PY MAJOR _VERSION >= 3
return module;

#endif

}

4 CObject replaced with Capsule

The Capsule object was introduced in Python 3.1 and 2.7 to replace CObject. CObjects were useful, but
the CObject API was problematic: it didn’t permit distinguishing between valid CObjects, which allowed mis-
matched CObjects to crash the interpreter, and some of its APIs relied on undefined behavior in C. (For further
reading on the rationale behind Capsules, please see issue 5630.)

If you’re currently using CObjects, and you want to migrate to 3.1 or newer, you’ll need to switch to Capsules.
CObject was deprecated in 3.1 and 2.7 and completely removed in Python 3.2. If you only support 2.7, or 3.1
and above, you can simply switch to Capsule. If you need to support Python 3.0, or versions of Python earlier
than 2.7, you’ll have to support both CObjects and Capsules. (Note that Python 3.0 is no longer supported, and it
is not recommended for production use.)

The following example header file capsulethunk.h may solve the problem for you. Simply write your code
against the Capsule API and include this header file after Python.h. Your code will automatically use Cap-
sules in versions of Python with Capsules, and switch to CObjects when Capsules are unavailable.

capsulethunk.h simulates Capsules using CObjects. However, CObject provides no place to store the
capsule’s “name”. As a result the simulated Capsule objects created by capsulethunk.h behave slightly
differently from real Capsules. Specifically:

https://bugs.python.org/issue5630

* The name parameter passed in to PyCapsule_New () is ignored.

* The name parameter passed in to PyCapsule_IsValid () and PyCapsule_GetPointer () isig-
nored, and no error checking of the name is performed.

e PyCapsule_GetName () always returns NULL.

e PyCapsule_SetName () always raises an exception and returns failure. (Since there’s no way to store
a name in a CObject, noisy failure of PyCapsule_SetName () was deemed preferable to silent failure
here. If this is inconvenient, feel free to modify your local copy as you see fit.)

You can find capsulethunk.h in the Python source distribution as Doc/includes/capsulethunk.h. We also
include it here for your convenience:

#ifndef __ CAPSULETHUNK_ H
#define __ CAPSULETHUNK_H

#if ((PY_VERSION_HEX < 0x02070000) \
/| ((PY_VERSION_HEX >= 0x03000000) \
&& (PY_VERSION_HEX < 0x03010000)))

#define __ PyCapsule_GetField(capsule, field, default_value) \
(PyCapsule_ CheckExact (capsule) \
? (((PyCObject x)capsule)->field) \
(default_value) \

#define ___PyCapsule_SetField(capsule, field, value) \
(PyCapsule_CheckExact (capsule) \
? (((PyCObject x)capsule)->field = value), 1 \
0\

#define PyCapsule_Type PyCObject_Type

#define PyCapsule_CheckExact (capsule) (PyCObject_Check (capsule))
#define PyCapsule_IsValid (capsule, name) (PyCObject_Check (capsule))

#define PyCapsule_New (pointer, name, destructor) \
(PyCObject_FromVoidPtr (pointer, destructor))

#define PyCapsule_GetPointer (capsule, name) \
(PyCObject_AsVoidPtr (capsule))

/# Don't call PyCObject_SetPointer here, it fails if there's a destructor */
#define PyCapsule_SetPointer (capsule, pointer) |\
__PyCapsule_ SetField(capsule, cobject, pointer)

#define PyCapsule_GetDestructor (capsule) \
__PyCapsule GetField(capsule, destructor)
#define PyCapsule_SetDestructor (capsule, dtor) \

_ PyCapsule_SetField(capsule, destructor, dtor)

J *

* Sorry, there's simply no place

https://hg.python.org/cpython/file/3.4/Doc/includes/capsulethunk.h

* to store a Capsule "name" in a CObject.
*/
#define PyCapsule_GetName (capsule) NULL

static int
PyCapsule_SetName (PyObject +capsule, const char xunused)
{
unused = unused;
PyErr_SetString (PyExc_NotImplementedError,
"can't use PyCapsule_SetName with CObjects");
return 1;

#define PyCapsule_GetContext (capsule) \
_ _PyCapsule GetField(capsule, descr)

#define PyCapsule_SetContext (capsule, context) \
__PyCapsule _SetField(capsule, descr, context)

static void =«
PyCapsule_Import (const char *name, int no_block)
{
PyObject *object = NULL;
void *return_value = NULL;
char *trace;
size_t name_length = (strlen(name) + 1) % sizeof (char);
char *name_dup = (char «)PyMem MALLOC (name_length);

if (!name_dup) {
return NULL;

memcpy (name_dup, name, name_length);

trace = name_dup;
while (trace) {
char xdot = strchr(trace, '.'");
if (dot) {
xdot++ = "\0';
}
if (object == NULL) {

if (no_block) {
object = PyImport_ImportModuleNoBlock (trace);
} else {
object = PyImport_ImportModule (trace);
if (!object) {
PyErr_Format (PyExc_ImportError,
"PyCapsule_Import could not
"import module \"%s\"", trace);

n

}

} else {
PyObject xobject2 = PyObject_GetAttrString(object,
Py_DECREF (object) ;

trace);

object = object2;

}
if (!object) {
goto EXIT;

trace = dot;

if (PyCObject_Check (object)) {

PyCObject =xcobject = (PyCObject =*)object;
return_value = cobject->cobject;
} else {

PyErr_Format (PyExc_AttributeError,
"PyCapsule_Import \"%s\" is not wvalid",
name) ;

EXIT:
Py_XDECREF (object) ;
if (name_dup) {
PyMem_FREE (name_dup) ;

}

return return_value;

#endif /+ #if PY VERSION_HEX < 0x02070000 x*/

#endif /+ __ CAPSULETHUNK_H x/

5 Other options

If you are writing a new extension module, you might consider Cython. It translates a Python-like language to C.
The extension modules it creates are compatible with Python 3 and Python 2.

http://cython.org/

Index
P

Python Enhancement Proposals
PEP 3121, 3

	Conditional compilation
	Changes to Object APIs
	str/unicode Unification
	long/int Unification

	Module initialization and state
	CObject replaced with Capsule
	Other options
	Index

