Python Tutorial
Release 2.7.10

Guido van Rossum
and the Python development team

June 01, 2015

Python Software Foundation
Email: docs@python.org

1 Whetting Your Appetite

2 Using the Python Interpreter

2.1 Invoking the Interpreter
2.2 The Interpreter and Its Environment

3 An Informal Introduction to Python

3.1 Using PythonasaCalculator
3.2 First Steps Towards Programming

4 More Control Flow Tools

4.1 dfStatements e e e e e e e e e e
42 forStatements e e e e e e e e e
43 Therange() Function

44 break and continue Statements, and e1lse Clauses on Loops

45 passStatements e e e e e e
4.6 DefiningFunctions e
47 More on Defining Functions,
4.8 Intermezzo: Coding Style

5 Data Structures

5.1 MoreonLists
5.2 Thedelstatement o vt ittt e e e e e
5.3 Tuplesand Sequencesot e e e
54 SetS . . e e e e e e
5.5 Dictionaries e e
5.6 Looping Techniques it
5.7 Moreon Conditions Lol e e e e e
5.8 Comparing Sequences and Other Types
6 Modules
6.1 MoreonModules L
6.2 Standard Modules e
6.3 Thedir () Function. i i i e
6.4 Packages e e e e
7 Input and Output
7.1 Fancier Output Formatting
7.2 Readingand Writing Files

8 Errors and Exceptions

CONTENTS

............ 23

29

............ 29

8.1 Syntax Errors L e e e e e e e

8.2 EXCEPIONS v i i e e e e e e e e e e e e e e
8.3 Handling EXCeptions i e e e e e e e e e e e e
8.4 Raising EXceptions L e e
8.5 User-defined EXceptions L . i e e e e
8.6 Defining Clean-up ACHONS vttt ittt e e e e e e e e e
8.7 Predefined Clean-up ACHIONS o v i v e e et e e e e e e e e e e e
Classes

9.1 A Word About Names and Objects i e
9.2 Python Scopes and Namespaces v v v v v v v i e e e e e e e e e e e e
9.3 AFirstLookat Classes. i i e e e
9.4 Random Remarks e e
9.5 Inheritance L L e e e e e e e
9.6 Private Variables and Class-local References
9.7 Oddsand Ends e e
9.8 Exceptions Are Classes TOO o i i i i i e e e e e e
0.9 TteratorS L. e e e
0.10 Generators e e e e e e e e e e e e e e e e e
9.11 Generator EXpressions oo vttt e e e e e e e e e

10 Brief Tour of the Standard Library

10.1 Operating System Interface L e
10.2 File Wildcards o o e e e
10.3 Command Line Arguments v i i v it e e e e e e e e e e e e e e
10.4 Error Output Redirection and Program Termination
10.5 String Pattern Matching oL
10.6 Mathematics o e e e e e e e e e e e
10.7 Internet ACCESS v v v v e i e e e e e e e e e e e e e e e e e
10.8 Datesand TIMes o o ot ittt e e e e e e e e e
10.9 Data Compression . . . v v v v v v v e
10.10 Performance Measurement o vt it e e e e e e e e e e e e e e e e
10.11 Quality Control L e e
10.12 Batteries Included L.

11 Brief Tour of the Standard Library — Part II

11.1 Output Formatting o e e e e e e e e e
11.2 Templating o o e e e e e e
11.3 Working with Binary Data Record Layouts
11.4 Multi-threading o e e e e e e e e e e e e e e
I1.5 Logging. . . o o o o o e e e e e e e e e e
11.6 Weak References e
11.7 Tools for Working with Lists o e
11.8 Decimal Floating Point Arithmetic e

12 What Now?

13 Interactive Input Editing and History Substitution

13.1 Line Editing o e e e e e e e e
13.2 History SubSttution o o i e e e e e e e e e e e e e e e
133 KeyBindings o o e e e
13.4 Alternatives to the Interactive Interpreter i i it e e

14 Floating Point Arithmetic: Issues and Limitations

14.1 Representation Error

63
63
63
65
68
69
71
72
72
73
74
75

77
77
77
78
78
78
78
79
79
80
80
80
81

83
83
84
85
85
86
86
87
88

91

93
93
93
93
95

97

15 Appendix

15.1 Interactive Mode

A Glossary

B About these documents

B.1 Contributors to the Python Documentation

C History and License

C.1 History of thesoftware

C.2 Terms and conditions for accessing or otherwise using Python

C.3 Licenses and Acknowledgements for Incorporated Software
D Copyright

Index

101
101

103

111
111

113
113
113
116

129

131

Python Tutorial, Release 2.7.10

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a simple
but effective approach to object-oriented programming. Python’s elegant syntax and dynamic typing, together with its
interpreted nature, make it an ideal language for scripting and rapid application development in many areas on most
platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for all major
platforms from the Python Web site, https://www.python.org/, and may be freely distributed. The same site also
contains distributions of and pointers to many free third party Python modules, programs and tools, and additional
documentation.

The Python interpreter is easily extended with new functions and data types implemented in C or C++ (or other
languages callable from C). Python is also suitable as an extension language for customizable applications.

This tutorial introduces the reader informally to the basic concepts and features of the Python language and system. It
helps to have a Python interpreter handy for hands-on experience, but all examples are self-contained, so the tutorial
can be read off-line as well.

For a description of standard objects and modules, see library-index. reference-index gives a more formal definition
of the language. To write extensions in C or C++, read extending-index and c-api-index. There are also several books
covering Python in depth.

This tutorial does not attempt to be comprehensive and cover every single feature, or even every commonly used
feature. Instead, it introduces many of Python’s most noteworthy features, and will give you a good idea of the
language’s flavor and style. After reading it, you will be able to read and write Python modules and programs, and you
will be ready to learn more about the various Python library modules described in library-index.

The Glossary is also worth going through.

CONTENTS 1

https://www.python.org/

Python Tutorial, Release 2.7.10

2 CONTENTS

CHAPTER
ONE

WHETTING YOUR APPETITE

If you do much work on computers, eventually you find that there’s some task you’d like to automate. For example,
you may wish to perform a search-and-replace over a large number of text files, or rename and rearrange a bunch of
photo files in a complicated way. Perhaps you’d like to write a small custom database, or a specialized GUI application,
or a simple game.

If you’re a professional software developer, you may have to work with several C/C++/Java libraries but find the usual
write/compile/test/re-compile cycle is too slow. Perhaps you’re writing a test suite for such a library and find writing
the testing code a tedious task. Or maybe you’ve written a program that could use an extension language, and you
don’t want to design and implement a whole new language for your application.

Python is just the language for you.

You could write a Unix shell script or Windows batch files for some of these tasks, but shell scripts are best at moving
around files and changing text data, not well-suited for GUI applications or games. You could write a C/C++/Java
program, but it can take a lot of development time to get even a first-draft program. Python is simpler to use, available
on Windows, Mac OS X, and Unix operating systems, and will help you get the job done more quickly.

Python is simple to use, but it is a real programming language, offering much more structure and support for large pro-
grams than shell scripts or batch files can offer. On the other hand, Python also offers much more error checking than
C, and, being a very-high-level language, it has high-level data types built in, such as flexible arrays and dictionaries.
Because of its more general data types Python is applicable to a much larger problem domain than Awk or even Perl,
yet many things are at least as easy in Python as in those languages.

Python allows you to split your program into modules that can be reused in other Python programs. It comes with a
large collection of standard modules that you can use as the basis of your programs — or as examples to start learning
to program in Python. Some of these modules provide things like file I/O, system calls, sockets, and even interfaces to
graphical user interface toolkits like Tk.

Python is an interpreted language, which can save you considerable time during program development because no
compilation and linking is necessary. The interpreter can be used interactively, which makes it easy to experiment with
features of the language, to write throw-away programs, or to test functions during bottom-up program development.
It is also a handy desk calculator.

Python enables programs to be written compactly and readably. Programs written in Python are typically much shorter
than equivalent C, C++, or Java programs, for several reasons:

* the high-level data types allow you to express complex operations in a single statement;
* statement grouping is done by indentation instead of beginning and ending brackets;
* no variable or argument declarations are necessary.

Python is extensible: if you know how to program in C it is easy to add a new built-in function or module to the
interpreter, either to perform critical operations at maximum speed, or to link Python programs to libraries that may
only be available in binary form (such as a vendor-specific graphics library). Once you are really hooked, you can

Python Tutorial, Release 2.7.10

link the Python interpreter into an application written in C and use it as an extension or command language for that
application.

By the way, the language is named after the BBC show “Monty Python’s Flying Circus” and has nothing to do with
reptiles. Making references to Monty Python skits in documentation is not only allowed, it is encouraged!

Now that you are all excited about Python, you’ll want to examine it in some more detail. Since the best way to learn
a language is to use it, the tutorial invites you to play with the Python interpreter as you read.

In the next chapter, the mechanics of using the interpreter are explained. This is rather mundane information, but
essential for trying out the examples shown later.

The rest of the tutorial introduces various features of the Python language and system through examples, beginning
with simple expressions, statements and data types, through functions and modules, and finally touching upon ad-
vanced concepts like exceptions and user-defined classes.

4 Chapter 1. Whetting Your Appetite

CHAPTER
TWO

USING THE PYTHON INTERPRETER

2.1 Invoking the Interpreter

The Python interpreter is usually installed as /usr/local/bin/python on those machines where it is available;
putting /usr/local/bin in your Unix shell’s search path makes it possible to start it by typing the command

python

to the shell. Since the choice of the directory where the interpreter lives is an installation option, other places are
possible; check with your local Python guru or system administrator. (E.g., /usr/local/python is a popular
alternative location.)

On Windows machines, the Python installation is usually placed in C: \Python27, though you can change this when
you’re running the installer. To add this directory to your path, you can type the following command into the command
prompt in a DOS box:

set path=%path%;C:\python27

Typing an end-of-file character (Control1-D on Unix, Control-Z on Windows) at the primary prompt causes the
interpreter to exit with a zero exit status. If that doesn’t work, you can exit the interpreter by typing the following
command: quit ().

The interpreter’s line-editing features usually aren’t very sophisticated. On Unix, whoever installed the interpreter
may have enabled support for the GNU readline library, which adds more elaborate interactive editing and history
features. Perhaps the quickest check to see whether command line editing is supported is typing Control-P to the
first Python prompt you get. If it beeps, you have command line editing; see Appendix Interactive Input Editing and
History Substitution for an introduction to the keys. If nothing appears to happen, or if *P is echoed, command line
editing isn’t available; you’ll only be able to use backspace to remove characters from the current line.

The interpreter operates somewhat like the Unix shell: when called with standard input connected to a tty device, it
reads and executes commands interactively; when called with a file name argument or with a file as standard input, it
reads and executes a script from that file.

A second way of starting the interpreter is python -c command [arg] ..., which executes the statement(s)
in command, analogous to the shell’s —c option. Since Python statements often contain spaces or other characters that
are special to the shell, it is usually advised to quote command in its entirety with single quotes.

Some Python modules are also useful as scripts. These can be invoked using python -m module [arg] ...,
which executes the source file for module as if you had spelled out its full name on the command line.

When a script file is used, it is sometimes useful to be able to run the script and enter interactive mode afterwards.
This can be done by passing —1i before the script.

All command-line options are described in using-on-general.

Python Tutorial, Release 2.7.10

2.1.1 Argument Passing

When known to the interpreter, the script name and additional arguments thereafter are turned into a list of strings
and assigned to the argv variable in the sys module. You can access this list by executing import sys. The
length of the list is at least one; when no script and no arguments are given, sys.argv[0] is an empty string.
When the script name is given as ’ =’ (meaning standard input), sys.argv[0] issetto ' —='. When —c command
is used, sys.argv[0] is set to ' —c’. When —m module is used, sys.argv[0] is set to the full name of the
located module. Options found after —c command or —m module are not consumed by the Python interpreter’s option
processing but left in sys . argv for the command or module to handle.

2.1.2 Interactive Mode

When commands are read from a tty, the interpreter is said to be in interactive mode. In this mode it prompts for
the next command with the primary prompt, usually three greater-than signs (>>>); for continuation lines it prompts
with the secondary prompt, by default three dots (. . .). The interpreter prints a welcome message stating its version
number and a copyright notice before printing the first prompt:

python

Python 2.7 (#1, Feb 28 2010, 00:02:06)

Type "help", "copyright", "credits" or "license" for more information.
>>>

Continuation lines are needed when entering a multi-line construct. As an example, take a look at this i f statement:
>>> the_world_is_flat =1
>>> if the_world_is_flat:
print "Be careful not to fall off!"
Be careful not to fall off!

For more on interactive mode, see Interactive Mode.

2.2 The Interpreter and Its Environment

2.2.1 Source Code Encoding

It is possible to use encodings different than ASCII in Python source files. The best way to do it is to put one more
special comment line right after the # ! line to define the source file encoding:

—»— coding: encoding —x-

With that declaration, all characters in the source file will be treated as having the encoding encoding, and it will be
possible to directly write Unicode string literals in the selected encoding. The list of possible encodings can be found
in the Python Library Reference, in the section on codecs.

For example, to write Unicode literals including the Euro currency symbol, the ISO-8859-15 encoding can be used,
with the Euro symbol having the ordinal value 164. This script, when saved in the ISO-8859-15 encoding, will print
the value 8364 (the Unicode code point corresponding to the Euro symbol) and then exit:

—%— coding: 150-8859-15 —x%-—

currency = u"€"
print ord(currency)

6 Chapter 2. Using the Python Interpreter

Python Tutorial, Release 2.7.10

If your editor supports saving files as UTF-8 with a UTF-8 byte order mark (aka BOM), you can use that in-
stead of an encoding declaration. IDLE supports this capability if Options/General/Default Source
Encoding/UTF-8 is set. Notice that this signature is not understood in older Python releases (2.2 and earlier),
and also not understood by the operating system for script files with # ! lines (only used on Unix systems).

By using UTF-8 (either through the signature or an encoding declaration), characters of most languages in the world
can be used simultaneously in string literals and comments. Using non-ASCII characters in identifiers is not supported.
To display all these characters properly, your editor must recognize that the file is UTF-8, and it must use a font that
supports all the characters in the file.

2.2. The Interpreter and Its Environment 7

Python Tutorial, Release 2.7.10

8 Chapter 2. Using the Python Interpreter

CHAPTER
THREE

AN INFORMAL INTRODUCTION TO PYTHON

In the following examples, input and output are distinguished by the presence or absence of prompts (>>> and ...): to
repeat the example, you must type everything after the prompt, when the prompt appears; lines that do not begin with
a prompt are output from the interpreter. Note that a secondary prompt on a line by itself in an example means you
must type a blank line; this is used to end a multi-line command.

Many of the examples in this manual, even those entered at the interactive prompt, include comments. Comments in
Python start with the hash character, #, and extend to the end of the physical line. A comment may appear at the start
of a line or following whitespace or code, but not within a string literal. A hash character within a string literal is just
a hash character. Since comments are to clarify code and are not interpreted by Python, they may be omitted when
typing in examples.

Some examples:

this 1s the first comment

spam = 1 # and this is the second comment
... and now a third!
text = "# This is not a comment because it's inside quotes."

3.1 Using Python as a Calculator

Let’s try some simple Python commands. Start the interpreter and wait for the primary prompt, >>>. (It shouldn’t
take long.)

3.1.1 Numbers

The interpreter acts as a simple calculator: you can type an expression at it and it will write the value. Expression
syntax is straightforward: the operators +, —, » and / work just like in most other languages (for example, Pascal or
C); parentheses (()) can be used for grouping. For example:

>>> 2 4+ 2

4

>>> 50 - 5%6

20

>>> (50 - 5.0x6) / 4
5.0

>> 8 / 5.0

1.6

The integer numbers (e.g. 2, 4, 20) have type int, the ones with a fractional part (e.g. 5.0, 1. 6) have type f1loat.
We will see more about numeric types later in the tutorial.

Python Tutorial, Release 2.7.10

The return type of a division (/) operation depends on its operands. If both operands are of type int, floor division
is performed and an int is returned. If either operand is a float, classic division is performed and a float is
returned. The // operator is also provided for doing floor division no matter what the operands are. The remainder
can be calculated with the % operator:

>> 17 / 3 # int / int —-> int

5

>>> 17 / 3.0 # int / float —-> float

5.666666666666667

>>> 17 // 3.0 # explicit floor division discards the fractional part
5.0

>>> 17 % 3 # the $% operator returns the remainder of the division

2

>>> 5 « 3 + 2 # result * divisor + remainder

17

\

With Python, it is possible to use the x » operator to calculate powers ':
>>> 5 *xx 2 # 5 squared

25

>>> 2 xx 7 # 2 to the power of 7

128

The equal sign (=) is used to assign a value to a variable. Afterwards, no result is displayed before the next interactive
prompt:

>>> width = 20

>>> height = 5 » 9
>>> width » height
900

If a variable is not “defined” (assigned a value), trying to use it will give you an error:

>>> n # try to access an undefined variable
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
'n' is not defined

NameError: name 'n

There is full support for floating point; operators with mixed type operands convert the integer operand to floating
point:

>>> 3 x 3.75 / 1.5
7.5

>>> 7.0 / 2

3.5

In interactive mode, the last printed expression is assigned to the variable _. This means that when you are using
Python as a desk calculator, it is somewhat easier to continue calculations, for example:

>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax
12.5625

>>> price + _
113.0625

>>> round(_, 2)
113.06

! Since »« has higher precedence than —, -3« 2 will be interpreted as — (3x+2) and thus result in —9. To avoid this and get 9, you can use
(=3) **2.

10 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 2.7.10

This variable should be treated as read-only by the user. Don’t explicitly assign a value to it — you would create an
independent local variable with the same name masking the built-in variable with its magic behavior.

In addition to int and float, Python supports other types of numbers, such as Decimal and Fraction. Python
also has built-in support for complex numbers, and uses the j or J suffix to indicate the imaginary part (e.g. 3+57).

3.1.2 Strings

Besides numbers, Python can also manipulate strings, which can be expressed in several ways. They can be enclosed

in single quotes (" . . .”) or double quotes (" . . . ") with the same result >. \ can be used to escape quotes:
>>> 'spam eggs' # single quotes

'spam eggs'

>>> 'doesn\'t' # use \' to escape the single quote...

"doesn't"

>>> "doesn't" # ...or use double quotes instead

"doesn't"

>>> '"Yes," he said.’

'"Yes," he said.'

>>> "\"Yes,\" he said."
'"Yes," he said.'

>>> ""Isn\'t," she said.'’
'""Isn\'t," she said.'

In the interactive interpreter, the output string is enclosed in quotes and special characters are escaped with backslashes.
While this might sometimes look different from the input (the enclosing quotes could change), the two strings are
equivalent. The string is enclosed in double quotes if the string contains a single quote and no double quotes, otherwise
it is enclosed in single quotes. The print statement produces a more readable output, by omitting the enclosing
quotes and by printing escaped and special characters:

>>> '""Isn\'t," she said.’

'""Isn\'t," she said.'

>>> print '"Isn\'t," she said.'

"Isn't," she said.

>>> s = 'First line.\nSecond line.' # \n means newline
>>> s # without print, \n is included in the output
'First line.\nSecond line.'

>>> print s # with print, \n produces a new line

First line.

Second line.

If you don’t want characters prefaced by \ to be interpreted as special characters, you can use raw strings by adding
an r before the first quote:

>>> print 'C:\some\name' # here \n means newline!
C:\some

ame

>>> print r'C:\some\name' # note the r before the quote

C:\some\name

String literals can span multiple lines. One way is using triple-quotes: """ ..."""or '’’’ ...’’’ . End of lines are
automatically included in the string, but it’s possible to prevent this by adding a \ at the end of the line. The following
example:

2 Unlike other languages, special characters such as \n have the same meaning with both single (” . . .”) and double (" . .. ") quotes. The
only difference between the two is that within single quotes you don’t need to escape " (but you have to escape \’) and vice versa.

3.1. Using Python as a Calculator 11

Python Tutorial, Release 2.7.10

print """\

Usage: thingy [OPTIONS]
-h Display this usage message
—-H hostname Hostname to connect to

wnn

produces the following output (note that the initial newline is not included):

Usage: thingy [OPTIONS]
-h Display this usage message
—-H hostname Hostname to connect to

Strings can be concatenated (glued together) with the + operator, and repeated with «:

>>> # 3 times 'un', followed by 'ium'
>>> 3 x 'un' + 'ium'
'unununium'’

Two or more string literals (i.e. the ones enclosed between quotes) next to each other are automatically concatenated.

>>> 'Py' 'thon'
'Python'

This only works with two literals though, not with variables or expressions:
>>> prefix = 'Py'

>>> prefix 'thon' # can't concatenate a variable and a string literal

SyntaxError: invalid syntax

>>> ('un' x 3) 'ium'

SyntaxError: invalid syntax

If you want to concatenate variables or a variable and a literal, use +:

>>> prefix + 'thon'
'Python'

This feature is particularly useful when you want to break long strings:

>>> text = ('Put several strings within parentheses '
'to have them joined together.')
>>> text
'Put several strings within parentheses to have them joined together.'

Strings can be indexed (subscripted), with the first character having index 0. There is no separate character type; a
character is simply a string of size one:

>>> word = 'Python'

>>> word[0] # character in position 0
IPI

>>> word([5] # character in position 5
lnl

Indices may also be negative numbers, to start counting from the right:

>>> word[—1] # last character

lnl

>>> word[—2] # second-last character
lol

>>> word[—6]

IPI

12 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 2.7.10

Note that since -0 is the same as 0, negative indices start from -1.

In addition to indexing, slicing is also supported. While indexing is used to obtain individual characters, slicing allows
you to obtain a substring:

>>> word[0:2] # characters from position 0 (included) to 2 (excluded)
le'
>>> word[2:5] # characters from position 2 (included) to 5 (excluded)
"tho!

Note how the start is always included, and the end always excluded. This makes sure that s[:1] + s[i:] is
always equal to s:

>>> word[:2] + word[2:]
'Python'
>>> word[:4] + word[4:]
'Python'

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second index defaults to the size
of the string being sliced.

>>> word[:2] # character from the beginning to position 2 (excluded)
lel

>>> word[4:] # characters from position 4 (included) to the end

'On'

>>> word[-2:] # characters from the second-last (included) to the end
lonl

One way to remember how slices work is to think of the indices as pointing between characters, with the left edge of
the first character numbered 0. Then the right edge of the last character of a string of n characters has index n, for
example:

b ———+
' Pl y Il t]l h| ol n|
s e e
0 1 2 3 4 5 6

-6 -5 -4 -3 -2 -1

The first row of numbers gives the position of the indices 0...6 in the string; the second row gives the corresponding
negative indices. The slice from i to j consists of all characters between the edges labeled i and j, respectively.

For non-negative indices, the length of a slice is the difference of the indices, if both are within bounds. For example,
the length of word [1:3] is 2.

Attempting to use a index that is too large will result in an error:

>>> word[42] # the word only has 6 characters
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: string index out of range
However, out of range slice indexes are handled gracefully when used for slicing:
>>> word[4:42]
Al on |l
>>> word[42:]

Python strings cannot be changed — they are immutable. Therefore, assigning to an indexed position in the string
results in an error:

3.1. Using Python as a Calculator 13

Python Tutorial, Release 2.7.10

>>> word[0] = 'J'

TypeError: 'str' object does not support item assignment
>>> word[2:] = 'py'

TypeError: 'str' object does not support item assignment

If you need a different string, you should create a new one:

>>> '"J' + word[l:]
'Jython'

>>> word[:2] + 'py'
'"Pypy'

The built-in function 1en () returns the length of a string:

>>> s = 'supercalifragilisticexpialidocious'
>>> len (s)

34

See also:

typesseq Strings, and the Unicode strings described in the next section, are examples of sequence types, and support
the common operations supported by such types.

string-methods Both strings and Unicode strings support a large number of methods for basic transformations and
searching.

new-string-formatting Information about string formatting with str. format () is described here.

string-formatting The old formatting operations invoked when strings and Unicode strings are the left operand of the
% operator are described in more detail here.

3.1.3 Unicode Strings

Starting with Python 2.0 a new data type for storing text data is available to the programmer: the Unicode object. It
can be used to store and manipulate Unicode data (see http://www.unicode.org/) and integrates well with the existing
string objects, providing auto-conversions where necessary.

Unicode has the advantage of providing one ordinal for every character in every script used in modern and ancient
texts. Previously, there were only 256 possible ordinals for script characters. Texts were typically bound to a code
page which mapped the ordinals to script characters. This lead to very much confusion especially with respect to
internationalization (usually written as 118n — ’ 1’ + 18 characters + ' n’) of software. Unicode solves these
problems by defining one code page for all scripts.

Creating Unicode strings in Python is just as simple as creating normal strings:

>>> u'Hello World !'
u'Hello World !'!

The small " u’ in front of the quote indicates that a Unicode string is supposed to be created. If you want to include
special characters in the string, you can do so by using the Python Unicode-Escape encoding. The following example
shows how:

>>> u'Hello\u0020World !
u'Hello World !'!

The escape sequence \u0020 indicates to insert the Unicode character with the ordinal value 0x0020 (the space
character) at the given position.

14 Chapter 3. An Informal Introduction to Python

http://www.unicode.org/

Python Tutorial, Release 2.7.10

Other characters are interpreted by using their respective ordinal values directly as Unicode ordinals. If you have
literal strings in the standard Latin-1 encoding that is used in many Western countries, you will find it convenient that
the lower 256 characters of Unicode are the same as the 256 characters of Latin-1.

For experts, there is also a raw mode just like the one for normal strings. You have to prefix the opening quote with
‘ur’ to have Python use the Raw-Unicode-Escape encoding. It will only apply the above \uXXXX conversion if there
is an uneven number of backslashes in front of the small ‘u’.

>>> ur'Hello\u0020World !’
u'Hello World !’

>>> ur'Hello\\u0020World !'
u'Hello\\\\u0020World !

The raw mode is most useful when you have to enter lots of backslashes, as can be necessary in regular expressions.

Apart from these standard encodings, Python provides a whole set of other ways of creating Unicode strings on the
basis of a known encoding.

The built-in function unicode () provides access to all registered Unicode codecs (COders and DECoders). Some
of the more well known encodings which these codecs can convert are Latin-1, ASCII, UTF-8, and UTF-16. The latter
two are variable-length encodings that store each Unicode character in one or more bytes. The default encoding is
normally set to ASCII, which passes through characters in the range 0 to 127 and rejects any other characters with an
error. When a Unicode string is printed, written to a file, or converted with st r (), conversion takes place using this
default encoding.

>>> u"abc"

u'abc!

>>> str(u"abc")

'abc'!

>>> u"aoi"

u'\xed\xfo\xfc'

>>> str(u"aoi")

Traceback (most recent call last):
File "<stdin>", line 1, in ?

UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-2: ordinal not in

To convert a Unicode string into an 8-bit string using a specific encoding, Unicode objects provide an encode ()
method that takes one argument, the name of the encoding. Lowercase names for encodings are preferred.

>>> y"aou".encode ('utf-8")
"\xc3\xad\xc3\xb6\xc3\xbc'

If you have data in a specific encoding and want to produce a corresponding Unicode string from it, you can use the
unicode () function with the encoding name as the second argument.

>>> unicode ('\xec3\xad\xc3\xb6\xc3\xbc', 'utf-8'")
u'\xed4\xf6\xfc'

3.1.4 Lists

Python knows a number of compound data types, used to group together other values. The most versatile is the /ist,
which can be written as a list of comma-separated values (items) between square brackets. Lists might contain items
of different types, but usually the items all have the same type.

>>> squares = [1, 4, 9, 16, 25]
>>> squares
(1, 4, 9, 16, 25]

Like strings (and all other built-in sequence type), lists can be indexed and sliced:

3.1. Using Python as a Calculator 15

Python Tutorial, Release 2.7.10

>>> squares [0] # indexing returns the item

>>> squares[—1]

25

>>> squares[-3:] # slicing returns a new 1ist
[9, 16, 25]

All slice operations return a new list containing the requested elements. This means that the following slice returns a
new (shallow) copy of the list:

>>> squares/|:]
(1, 4, 9, 16, 25]

Lists also supports operations like concatenation:

>>> squares + [36, 49, 64, 81, 100]
(1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Unlike strings, which are immutable, lists are a mutable type, i.e. it is possible to change their content:

>>> cubes = [1, 8, 27, 65, 125] # something's wrong here
>>> 4 xx 3 # the cube of 4 is 64, not 65!

64

>>> cubes[3] = 64 # replace the wrong value

>>> cubes
(1, 8, 27, 64, 125]

You can also add new items at the end of the list, by using the append () method (we will see more about methods
later):

>>> cubes.append (216) # add the cube of 6
>>> cubes.append (7 ** 3) # and the cube of 7
>>> cubes

(1, 8, 27, 64, 125, 216, 343]

Assignment to slices is also possible, and this can even change the size of the list or clear it entirely:

>>> letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
>>> letters

['a', 'b', 'c¢', 'd', 'e', 'f', 'g']

>>> # replace some values

>>> letters([2:5] = ['C', 'D', 'E']

>>> letters

(['a', 'b', 'Cc', 'D', 'E', 'f', 'g']

>>> # now remove them

>>> letters[2:5] = []

>>> letters

('a', 'b', '£', 'g']

>>> # clear the 1list by replacing all the elements with an empty 1list
>>> letters[:] = []

>>> letters

[]

The built-in function 1en () also applies to lists:

>>> letters = ['a', 'b', 'c', 'd']
>>> len(letters)
4

It is possible to nest lists (create lists containing other lists), for example:

16 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 2.7.10

3.2

a=['a'", '"b', 'c']

n-= [1, 2, 3]

x = [a, n]

X

', b, 'c'l, [1, 2, 31]
x[0]

14 'bll 'C']

x[0][1]

First Steps Towards Programming

Of course, we can use Python for more complicated tasks than adding two and two together. For instance, we can
write an initial sub-sequence of the Fibonacci series as follows:

>>>

>>>

0 U W N

Fibonacci series:
the sum of two elements defines the next
a, b=20, 1
while b < 10:
print b
a, b =Db, atb

This example introduces several new features.

The first line contains a multiple assignment: the variables a and b simultaneously get the new values 0 and 1.
On the last line this is used again, demonstrating that the expressions on the right-hand side are all evaluated
first before any of the assignments take place. The right-hand side expressions are evaluated from the left to the
right.

The while loop executes as long as the condition (here: b < 10) remains true. In Python, like in C, any non-
zero integer value is true; zero is false. The condition may also be a string or list value, in fact any sequence;
anything with a non-zero length is true, empty sequences are false. The test used in the example is a simple
comparison. The standard comparison operators are written the same as in C: < (less than), > (greater than), ==
(equal to), <= (less than or equal to), >= (greater than or equal to) and ! = (not equal to).

The body of the loop is indented: indentation is Python’s way of grouping statements. At the interactive prompt,
you have to type a tab or space(s) for each indented line. In practice you will prepare more complicated input
for Python with a text editor; all decent text editors have an auto-indent facility. When a compound statement is
entered interactively, it must be followed by a blank line to indicate completion (since the parser cannot guess
when you have typed the last line). Note that each line within a basic block must be indented by the same
amount.

The print statement writes the value of the expression(s) it is given. It differs from just writing the expression
you want to write (as we did earlier in the calculator examples) in the way it handles multiple expressions and
strings. Strings are printed without quotes, and a space is inserted between items, so you can format things
nicely, like this:

>>> 1 = 256%256
>>> print 'The value of i is', 1

3.2. First Steps Towards Programming 17

Python Tutorial, Release 2.7.10

The value of i is 65536
A trailing comma avoids the newline after the output:

>>> a, b =0, 1

>>> while b < 1000:
print b,
a, b ="D0b, atb

112358 13 21 34 55 89 144 233 377 610 987

Note that the interpreter inserts a newline before it prints the next prompt if the last line was not completed.

18 Chapter 3. An Informal Introduction to Python

CHAPTER
FOUR

MORE CONTROL FLOW TOOLS

Besides the while statement just introduced, Python knows the usual control flow statements known from other
languages, with some twists.

4.1 if Statements

Perhaps the most well-known statement type is the i f statement. For example:

>>> x = int (raw_input ("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:

x =0

print 'Negative changed to zero'
elif x == 0:

print 'Zero'
elif x == 1:

print 'Single'
else:

print 'More'

More
There can be zero or more e11f parts, and the else part is optional. The keyword ‘e11i f* is short for ‘else if’, and

is useful to avoid excessive indentation. An 1f ... elif ... elif ... sequence is a substitute for the switch or case
statements found in other languages.

4.2 for Statements

The for statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always iterating
over an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define both the iteration
step and halting condition (as C), Python’s for statement iterates over the items of any sequence (a list or a string), in
the order that they appear in the sequence. For example (no pun intended):

>>> # Measure some strings:
words = ['cat', 'window', 'defenestrate']
>>> for w in words:
print w, len (w)

cat 3

19

Python Tutorial, Release 2.7.10

window 6
defenestrate 12

If you need to modify the sequence you are iterating over while inside the loop (for example to duplicate selected
items), it is recommended that you first make a copy. Iterating over a sequence does not implicitly make a copy. The
slice notation makes this especially convenient:

>>> for w in words[:]: # Loop over a slice copy of the entire 1ist.
if len(w) > 6:
words.insert (0, w)
>>> words
['defenestrate', 'cat', 'window', 'defenestrate']

4.3 The range () Function

If you do need to iterate over a sequence of numbers, the built-in function range () comes in handy. It generates lists
containing arithmetic progressions:

>>> range (10)
[OI ll 2/ 37 4/ 5/ 6/ 77 8/ 9]

The given end point is never part of the generated list; range (10) generates a list of 10 values, the legal indices
for items of a sequence of length 10. It is possible to let the range start at another number, or to specify a different
increment (even negative; sometimes this is called the ‘step’):

>>> range (5, 10)

[5, 6, 7, 8, 9]

>>> range (0, 10, 3)

[0, 3, 6, 9]

>>> range(-10, -100, -30)
[-10, —-40, -70]

To iterate over the indices of a sequence, you can combine range () and len () as follows:
>>> g = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):

print i, alil]
0 Mary
1 had
2 a

3 little
4 lamb

In most such cases, however, it is convenient to use the enumerate () function, see Looping Techniques.

4.4 break and continue Statements, and else Clauses on Loops

The break statement, like in C, breaks out of the smallest enclosing for or while loop.

Loop statements may have an e 1 se clause; it is executed when the loop terminates through exhaustion of the list (with
for) or when the condition becomes false (with while), but not when the loop is terminated by a break statement.
This is exemplified by the following loop, which searches for prime numbers:

20 Chapter 4. More Control Flow Tools

Python Tutorial, Release 2.7.10

>>> for n in range (2, 10):

O 00 ~J o U b W N -

for x in range (2, n):
if n $ x == 0:
print n, 'equals', x, '*', n/x
break
else:
loop fell through without finding a factor

print n, 'is a prime number'

is a prime number
is a prime number
equals 2 * 2
is a prime number
equals 2 x 3
is a prime number
equals 2 x 4
equals 3 * 3

(Yes, this is the correct code. Look closely: the el se clause belongs to the for loop, not the if statement.)

When used with a loop, the el se clause has more in common with the else clause of a t ry statement than it does
that of i f statements: a t ry statement’s el se clause runs when no exception occurs, and a loop’s e 1 se clause runs
when no break occurs. For more on the t ry statement and exceptions, see Handling Exceptions.

The continue statement, also borrowed from C, continues with the next iteration of the loop:

>>> for num in range (2

Found
Found
Found
Found
Found
Found
Found

, 10):

if num % 2 == 0:
print "Found an even number", num
continue

print "Found a number", num

an even number 2
a number 3
an even number 4
a number 5
an even number 6
a number 7
an even number 8

Found a number 9

4.5 pass Statements

The pass statement does nothing. It can be used when a statement is required syntactically but the program requires
no action. For example:

>>> while True:

pass # Busy-wait for keyboard interrupt (Ctrl+C)

This is commonly used for creating minimal classes:

>>> class MyEmptyClass:

pass

4.5. pass Statements 21

Python Tutorial, Release 2.7.10

Another place pass can be used is as a place-holder for a function or conditional body when you are working on new
code, allowing you to keep thinking at a more abstract level. The pass is silently ignored:

>>> def initlog(xargs):
pass # Remember to implement this!

4.6 Defining Functions

We can create a function that writes the Fibonacci series to an arbitrary boundary:

>>> def fib(n): # write Fibonacci series up to n
"""print a Fibonacci series up to n."""
a, b=20, 1
while a < n:
print a,
a, b ="D»b, atb

>>> # Now call the function we just defined:
fib (2000)
0112 358 13 21 34 55 89 144 233 377 610 987 1597

The keyword de f introduces a function definition. It must be followed by the function name and the parenthesized list
of formal parameters. The statements that form the body of the function start at the next line, and must be indented.

The first statement of the function body can optionally be a string literal; this string literal is the function’s documenta-
tion string, or docstring. (More about docstrings can be found in the section Documentation Strings.) There are tools
which use docstrings to automatically produce online or printed documentation, or to let the user interactively browse
through code; it’s good practice to include docstrings in code that you write, so make a habit of it.

The execution of a function introduces a new symbol table used for the local variables of the function. More precisely,
all variable assignments in a function store the value in the local symbol table; whereas variable references first look
in the local symbol table, then in the local symbol tables of enclosing functions, then in the global symbol table, and
finally in the table of built-in names. Thus, global variables cannot be directly assigned a value within a function
(unless named in a global statement), although they may be referenced.

The actual parameters (arguments) to a function call are introduced in the local symbol table of the called function
when it is called; thus, arguments are passed using call by value (where the value is always an object reference, not
the value of the object). ' When a function calls another function, a new local symbol table is created for that call.

A function definition introduces the function name in the current symbol table. The value of the function name has a
type that is recognized by the interpreter as a user-defined function. This value can be assigned to another name which
can then also be used as a function. This serves as a general renaming mechanism:

>>> fib

<function fib at 10042ed0>
>>> f = fib

>>> £ (100)

0112 35813 21 34 55 89

Coming from other languages, you might object that £ib is not a function but a procedure since it doesn’t return a
value. In fact, even functions without a return statement do return a value, albeit a rather boring one. This value is
called None (it’s a built-in name). Writing the value None is normally suppressed by the interpreter if it would be the
only value written. You can see it if you really want to using print:

! Actually, call by object reference would be a better description, since if a mutable object is passed, the caller will see any changes the callee
makes to it (items inserted into a list).

22 Chapter 4. More Control Flow Tools

Python Tutorial, Release 2.7.10

>>>

fib (0)

>>> print f£ib (0)

None

It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of printing it:

>>>

>>>
>>>
[0,

def fib2(n): # return Fibonacci series up to n
"""Return a list containing the Fibonacci series up to n."""
result = []

a, b=20,1

while a < n:
result.append(a) # see below
a, b ="D»b, atb

return result

£f100 = £ib2(100) # call it

£100 # write the result

i, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:

4.7

The return statement returns with a value from a function. return without an expression argument returns
None. Falling off the end of a function also returns None.

The statement result .append (a) calls a method of the list object result. A method is a function that
‘belongs’ to an object and is named ob j . met hodname, where ob 7 is some object (this may be an expression),
and met hodname is the name of a method that is defined by the object’s type. Different types define different
methods. Methods of different types may have the same name without causing ambiguity. (It is possible to
define your own object types and methods, using classes, see Classes) The method append () shown in the
example is defined for list objects; it adds a new element at the end of the list. In this example it is equivalent to
result = result + [a], but more efficient.

More on Defining Functions

It is also possible to define functions with a variable number of arguments. There are three forms, which can be
combined.

4.7.1 Default Argument Values

The most useful form is to specify a default value for one or more arguments. This creates a function that can be called
with fewer arguments than it is defined to allow. For example:

def

ask_ok (prompt, retries=4, complaint='Yes or no, please!'):
while True:
ok = raw_input (prompt)
if ok in ('y', 'ye', 'yes'):
return True

if ok in ('n', 'no', 'nop', 'nope'):
return False
retries = retries - 1

if retries < 0:
raise IOError ('refusenik user')
print complaint

This function can be called in several ways:

4.7.

More on Defining Functions 23

Python Tutorial, Release 2.7.10

* giving only the mandatory argument: ask_ok (Do you really want to quit?’)
* giving one of the optional arguments: ask_ok (" OK to overwrite the file?’, 2)

e or even giving all arguments: ask_ok (OK to overwrite the file?’, 2, ’‘Come on, only
yes or no!’)

This example also introduces the in keyword. This tests whether or not a sequence contains a certain value.
The default values are evaluated at the point of function definition in the defining scope, so that
i=25

def f (arg=i):
print arg

will print 5.

Important warning: The default value is evaluated only once. This makes a difference when the default is a mutable
object such as a list, dictionary, or instances of most classes. For example, the following function accumulates the
arguments passed to it on subsequent calls:

def f(a, L=[]):
L.append (a)
return L

print f (1)
print f(2)
print £ (3)

This will print

If you don’t want the default to be shared between subsequent calls, you can write the function like this instead:

def f (a, L=None):
if L is None:
L =[]
L.append (a)
return L

4.7.2 Keyword Arguments

Functions can also be called using keyword arguments of the form kwarg=value. For instance, the following
function:

def parrot (voltage, state='a stiff', action='voom', type='Norwegian Blue'):

print "-- This parrot wouldn't", action,

print "if you put", voltage, "volts through it."
print "-- Lovely plumage, the", type

print "-- It's", state, "!"

accepts one required argument (voltage) and three optional arguments (state, action, and type). This function
can be called in any of the following ways:

24 Chapter 4. More Control Flow Tools

Python Tutorial, Release 2.7.10

parrot (1000)
parrot (voltage=1000)

(positional argument
(
parrot (voltage=1000000, action='VOOOOOM")
(
('
('

keyword argument
keyword arguments

ST T
O I N

parrot (action='VOOOOOM', voltage=1000000) keyword arguments
parrot('a million' 'bereft of life', 'jump') positional arguments
parrot ('a thousand‘ state="pushing up the daisies') positional, 1 keyword

but all the following calls would be invalid:

parrot () # required argument missing
parrot (voltage=5.0, 'dead'") # non-keyword argument after a keyword argument
parrot (110, voltage=220) # duplicate value for the same argument

(

parrot (actor='John Cleese') # unknown keyword argument

In a function call, keyword arguments must follow positional arguments. All the keyword arguments passed must
match one of the arguments accepted by the function (e.g. actor is not a valid argument for the parrot function),
and their order is not important. This also includes non-optional arguments (e.g. parrot (voltage=1000) is
valid too). No argument may receive a value more than once. Here’s an example that fails due to this restriction:

>>> def function(a):
pass

>>> function (0, a=0)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: function() got multiple values for keyword argument 'a'

When a final formal parameter of the form % xname is present, it receives a dictionary (see typesmapping) containing
all keyword arguments except for those corresponding to a formal parameter. This may be combined with a formal
parameter of the form *name (described in the next subsection) which receives a tuple containing the positional
arguments beyond the formal parameter list. (xname must occur before *+name.) For example, if we define a
function like this:

def cheeseshop (kind, *arguments, =xxkeywords):
print "-- Do you have any", kind, "?"
print "-- I'm sorry, we're all out of", kind
for arg in arguments:
print arg
print "-" % 40
keys = sorted(keywords.keys())
for kw in keys:
print kw, ":", keywords [kw]

It could be called like this:

cheeseshop ("Limburger", "It's very runny, sir.",
"It's really very, VERY runny, sir.",
shopkeeper="'Michael Palin',
client="John Cleese",
sketch="Cheese Shop Sketch")

and of course it would print:

-— Do you have any Limburger ?

-— I'm sorry, we're all out of Limburger
It's very runny, sir.

It's really very, VERY runny, sir.

4.7. More on Defining Functions 25

Python Tutorial, Release 2.7.10

shopkeeper : Michael Palin
sketch : Cheese Shop Sketch

Note that the list of keyword argument names is created by sorting the result of the keywords dictionary’s keys ()
method before printing its contents; if this is not done, the order in which the arguments are printed is undefined.

4.7.3 Arbitrary Argument Lists

Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of argu-
ments. These arguments will be wrapped up in a tuple (see Tuples and Sequences). Before the variable number of
arguments, zero or more normal arguments may occur.

def write_multiple_items(file, separator, =xargs):
file.write (separator.join(args))

4.7.4 Unpacking Argument Lists

The reverse situation occurs when the arguments are already in a list or tuple but need to be unpacked for a function
call requiring separate positional arguments. For instance, the built-in range () function expects separate start and
stop arguments. If they are not available separately, write the function call with the *-operator to unpack the arguments
out of a list or tuple:

>>> range (3, 6) # normal call with separate arguments

[3, 4, 5]

>>> args = [3, 6]

>>> range (xargs) # call with arguments unpacked from a 1ist
[3, 4, 5]

In the same fashion, dictionaries can deliver keyword arguments with the x-operator:

>>> def parrot (voltage, state='a stiff', action='voom'):
print "-- This parrot wouldn't", action,
print "if you put", voltage, "volts through it.",
print "E's", state, "!"

>>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"}
>>> parrot (xxd)
—-— This parrot wouldn't VOOM if you put four million volts through it. E's bleedin'

4.7.5 Lambda Expressions

Small anonymous functions can be created with the 1ambda keyword. This function returns the sum of its two
arguments: lambda a, b: a+b. Lambda functions can be used wherever function objects are required. They
are syntactically restricted to a single expression. Semantically, they are just syntactic sugar for a normal function
definition. Like nested function definitions, lambda functions can reference variables from the containing scope:

>>> def make_incrementor (n) :
return lambda x: x + n

>>> f = make_incrementor (42)
>>> £ (0)

42

>>> £ (1)

43

26 Chapter 4. More Control Flow Tools

demise

Python Tutorial, Release 2.7.10

The above example uses a lambda expression to return a function. Another use is to pass a small function as an
argument:

>>> pairs = [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')]
>>> pairs.sort (key=lambda pair: pair[1l])

>>> pairs

[(4, '"four'), (1, 'one'), (3, 'three'), (2, 'two')]

4.7.6 Documentation Strings

There are emerging conventions about the content and formatting of documentation strings.

The first line should always be a short, concise summary of the object’s purpose. For brevity, it should not explicitly
state the object’s name or type, since these are available by other means (except if the name happens to be a verb
describing a function’s operation). This line should begin with a capital letter and end with a period.

If there are more lines in the documentation string, the second line should be blank, visually separating the summary
from the rest of the description. The following lines should be one or more paragraphs describing the object’s calling
conventions, its side effects, etc.

The Python parser does not strip indentation from multi-line string literals in Python, so tools that process documen-
tation have to strip indentation if desired. This is done using the following convention. The first non-blank line after
the first line of the string determines the amount of indentation for the entire documentation string. (We can’t use
the first line since it is generally adjacent to the string’s opening quotes so its indentation is not apparent in the string
literal.) Whitespace “equivalent” to this indentation is then stripped from the start of all lines of the string. Lines that
are indented less should not occur, but if they occur all their leading whitespace should be stripped. Equivalence of
whitespace should be tested after expansion of tabs (to 8 spaces, normally).

Here is an example of a multi-line docstring:

>>> def my_function():
"""Do nothing, but document it.

No, really, it doesn't do anything.

mmn

pass

>>> print my_function.__doc

Do nothing, but document it.

No, really, it doesn't do anything.

4.8 Intermezzo: Coding Style

Now that you are about to write longer, more complex pieces of Python, it is a good time to talk about coding style.
Most languages can be written (or more concise, formatted) in different styles; some are more readable than others.
Making it easy for others to read your code is always a good idea, and adopting a nice coding style helps tremendously
for that.

For Python, PEP 8 has emerged as the style guide that most projects adhere to; it promotes a very readable and
eye-pleasing coding style. Every Python developer should read it at some point; here are the most important points
extracted for you:

» Use 4-space indentation, and no tabs.

4.8. Intermezzo: Coding Style 27

http://www.python.org/dev/peps/pep-0008

Python Tutorial, Release 2.7.10

4 spaces are a good compromise between small indentation (allows greater nesting depth) and large indentation
(easier to read). Tabs introduce confusion, and are best left out.

Wrap lines so that they don’t exceed 79 characters.

This helps users with small displays and makes it possible to have several code files side-by-side on larger
displays.

Use blank lines to separate functions and classes, and larger blocks of code inside functions.
When possible, put comments on a line of their own.
Use docstrings.

Use spaces around operators and after commas, but not directly inside bracketing constructs: a = £ (1, 2)
+ 9(3, 4).

Name your classes and functions consistently; the convention is to use CamelCase for classes and
lower_case_with_underscores for functions and methods. Always use self as the name for the
first method argument (see A First Look at Classes for more on classes and methods).

Don’t use fancy encodings if your code is meant to be used in international environments. Plain ASCII works
best in any case.

28

Chapter 4. More Control Flow Tools

CHAPTER
FIVE

DATA STRUCTURES

This chapter describes some things you’ve learned about already in more detail, and adds some new things as well.

5.1 More on Lists

The list data type has some more methods. Here are all of the methods of list objects:

list.append (x)
Add an item to the end of the list; equivalentto a[len(a) :] = [x].

list.extend (L)
Extend the list by appending all the items in the given list; equivalentto a[len(a) :] = L.

list.insert (i, x)
Insert an item at a given position. The first argument is the index of the element before which to in-
sert, o a.insert (0, x) inserts at the front of the list, and a.insert (len(a), x) is equivalent to
a.append (x).

list.remove (x)
Remove the first item from the list whose value is x. It is an error if there is no such item.

list.pop ([i])
Remove the item at the given position in the list, and return it. If no index is specified, a.pop () removes
and returns the last item in the list. (The square brackets around the i in the method signature denote that
the parameter is optional, not that you should type square brackets at that position. You will see this notation
frequently in the Python Library Reference.)

list.index (x)
Return the index in the list of the first item whose value is x. It is an error if there is no such item.

list.count (x)
Return the number of times x appears in the list.

list.sort (cmp=None, key=None, reverse=False)
Sort the items of the list in place (the arguments can be used for sort customization, see sorted () for their
explanation).

list.reverse ()
Reverse the elements of the list, in place.

An example that uses most of the list methods:

>>> a = [66.25, 333, 333, 1, 1234.5]

>>> print a.count (333), a.count (66.25), a.count ('x'")
210

>>> a.insert (2, -1)

29

Python Tutorial, Release 2.7.10

>>> a.append(333)

>>> a

[66.25, 333, -1, 333, 1, 1234.5, 333]
>>> a.index (333)

1

>>> a.remove (333)

>>> a

[66.25, -1, 333, 1, 1234.5, 333]
>>> a.reverse ()

>>> a

[333, 1234.5, 1, 333, -1, 66.25]
>>> a.sort ()

>>> a

(-1, 1, 66.25, 333, 333, 1234.5]
>>> a.pop ()

1234.5

>>> a

(-1, 1, 66.25, 333, 333]

You might have noticed that methods like insert, remove or sort that only modify the list have no return value
printed — they return the default None. ! This is a design principle for all mutable data structures in Python.

5.1.1 Using Lists as Stacks

The list methods make it very easy to use a list as a stack, where the last element added is the first element retrieved
(“last-in, first-out”). To add an item to the top of the stack, use append (). To retrieve an item from the top of the
stack, use pop () without an explicit index. For example:

>>> stack = [3, 4, 5]
>>> stack.append (6)
>>> stack.append(7)
>>> stack

(3, 4, 5, 6, 7]
>>> stack.pop (

>>> stack
(3, 4, 5, 6]
>>> stack.pop ()

>>> stack.pop ()

>>> stack
[3, 4]

5.1.2 Using Lists as Queues

It is also possible to use a list as a queue, where the first element added is the first element retrieved (“first-in, first-
out”); however, lists are not efficient for this purpose. While appends and pops from the end of list are fast, doing
inserts or pops from the beginning of a list is slow (because all of the other elements have to be shifted by one).

To implement a queue, use collections.deque which was designed to have fast appends and pops from both
ends. For example:

! The rules for comparing objects of different types should not be relied upon; they may change in a future version of the language.

30 Chapter 5. Data Structures

Python Tutorial, Release 2.7.10

>>> from collections import deque

>>> queue = deque(["Eric", "John", "Michael"])

>>> queue.append ("Terry") # Terry arrives

>>> queue.append ("Graham") # Graham arrives

>>> queue.popleft () # The first to arrive now leaves
'Eric'

>>> queue.popleft () # The second to arrive now leaves
'John'

>>> queue # Remaining queue in order of arrival
deque (['Michael', 'Terry', 'Graham'])

5.1.3 Functional Programming Tools

There are three built-in functions that are very useful when used with lists: filter (), map (), and reduce ().

filter (function, sequence) returns a sequence consisting of those items from the sequence for which
function (item) is true. If sequence is a str, unicode or tuple, the result will be of the same type; oth-
erwise, it is always a 1ist. For example, to compute a sequence of numbers divisible by 3 or 5:

)

>>> def f(x): return x $ 3 == 0 or x 5 5 == 0
>>> filter(f, range (2, 25))
(3, 5, 6, 9, 10, 12, 15, 18, 20, 21, 24]

map (function, sequence) calls function (item) for each of the sequence’s items and returns a list of the
return values. For example, to compute some cubes:

>>> def cube(x): return x x*x
>>> map (cube, range(l, 11))
(1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

More than one sequence may be passed; the function must then have as many arguments as there are sequences and
is called with the corresponding item from each sequence (or None if some sequence is shorter than another). For
example:

>>> seq = range (8)

>>> def add(x, y): return x+y
>>> map (add, seq, seq)

[0, 2, 4, 6, 8, 10, 12, 14]

reduce (function, sequence) returns a single value constructed by calling the binary function function on
the first two items of the sequence, then on the result and the next item, and so on. For example, to compute the sum
of the numbers 1 through 10:

>>> def add(x,y): return x+y

>>> reduce (add, range(l, 11))

55

If there’s only one item in the sequence, its value is returned; if the sequence is empty, an exception is raised.

A third argument can be passed to indicate the starting value. In this case the starting value is returned for an empty
sequence, and the function is first applied to the starting value and the first sequence item, then to the result and the
next item, and so on. For example,

>>> def sum(seq):
def add(x,y): return x+y

5.1. More on Lists 31

Python Tutorial, Release 2.7.10

return reduce (add, seq, 0)

>>> sum(range(l, 11))
55

>>> sum([])

0

Don’t use this example’s definition of sum () : since summing numbers is such a common need, a built-in function
sum (sequence) is already provided, and works exactly like this.

5.1.4 List Comprehensions

List comprehensions provide a concise way to create lists. Common applications are to make new lists where each
element is the result of some operations applied to each member of another sequence or iterable, or to create a subse-
quence of those elements that satisfy a certain condition.

For example, assume we want to create a list of squares, like:

>>> squares = []
>>> for x in range (10) :
squares.append (x**2)

>>> squares
(0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

‘We can obtain the same result with:
squares = [x**x2 for x in range (10)]

This is also equivalent to squares = map (lambda x: x*%2, range (10)),butit’s more concise and read-
able.

A list comprehension consists of brackets containing an expression followed by a for clause, then zero or more for
or if clauses. The result will be a new list resulting from evaluating the expression in the context of the for and i f
clauses which follow it. For example, this listcomp combines the elements of two lists if they are not equal:

>>> [(x, y) for x in [1,2,3] for yv in [3,1,4] if x !'= y]
((x, 3, (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

and it’s equivalent to:

>>> combs = []
>>> for x in [1,2,3]:
for vy in [3,1,4]:
if x !'= vy:
combs.append ((x, y))
>>> combs
((x, 3, (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]
Note how the order of the for and i f statements is the same in both these snippets.
If the expression is a tuple (e.g. the (x, y) in the previous example), it must be parenthesized.

>>> vec = [-4, -2, 0, 2, 4]

>>> # create a new list with the values doubled
>>> [x*x2 for x in vec]

(-8, -4, 0, 4, 8]

>>> # filter the list to exclude negative numbers
>>> [x for x in vec if x >= 0]

32 Chapter 5. Data Structures

Python Tutorial, Release 2.7.10

[0, 2, 4]
>>> # apply a function to all the elements
>>> [abs(x) for x in vec]
(4, 2, 0, 2, 4]
>>> # call a method on each element
>>> freshfruit = [' banana', ' loganberry ', 'passion fruit ']
>>> [weapon.strip() for weapon in freshfruit]
['"banana', 'loganberry', 'passion fruit']
>>> # create a list of 2-tuples like (number, square)
>>> [(x, x*xx2) for x in range (6)]
(o, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]
>>> # the tuple must be parenthesized, otherwise an error is raised
>>> [x, xxx2 for x in range (6)]

File "<stdin>", line 1

[x, x*x*x2 for x in range (6)]

SyntaxError: invalid syntax
>>> # flatten a list using a listcomp with two 'for'
>>> vec = [[1,2,31, [4,5,61, [7,8,9]1]
>>> [num for elem in vec for num in elem]
(1, 2, 3, 4, 5, 6, 7, 8, 9]

List comprehensions can contain complex expressions and nested functions:

>>> from math import pi
>>> [str(round(pi, 1)) for i in range(l, 6)]
('3.1', '3.14', '3.142', '3.1416"', '3.14159"']

Nested List Comprehensions

The initial expression in a list comprehension can be any arbitrary expression, including another list comprehension.
Consider the following example of a 3x4 matrix implemented as a list of 3 lists of length 4:

>>> matrix = |
(1, 2, 3, 41,
[5, 6, 7, 81,
(¢, 10, 11, 121,
1

The following list comprehension will transpose rows and columns:

>>> [[row[i] for row in matrix] for i in range (4)]
(rx, 5, 91, (2, o6, 101, [3, 7, 111, [4, 8, 12]]

As we saw in the previous section, the nested listcomp is evaluated in the context of the for that follows it, so this
example is equivalent to:

>>> transposed = []
>>> for i1 in range(4):
transposed.append([row[i] for row in matrix])

>>> transposed
(ctx, 5, 91, (2, e, 101, I3, 7, 111, [4, 8, 12]]

which, in turn, is the same as:

5.1. More on Lists 33

Python Tutorial, Release 2.7.10

>>> transposed = []
>>> for i in range(4):
the following 3 lines implement the nested listcomp
transposed_row = []
for row in matrix:
transposed_row.append (row[i])
transposed.append (transposed_row)

>>> transposed
(cy, 5, 91, (2, e, 10J], [3, 7, 111, [4, 8, 12]]

In the real world, you should prefer built-in functions to complex flow statements. The zip () function would do a
great job for this use case:

>>> zip (xmatrix)
(1, 5, 9, (2, 6, 10), (3, 7, 11), (4, 8, 12)]

See Unpacking Argument Lists for details on the asterisk in this line.

5.2 The del statement

There is a way to remove an item from a list given its index instead of its value: the del statement. This differs from
the pop () method which returns a value. The de 1 statement can also be used to remove slices from a list or clear the
entire list (which we did earlier by assignment of an empty list to the slice). For example:

>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del al[0]

>>> a

[1, 66.25, 333, 333, 1234.5]

>>> del a[2:4]

>>> a

[1, 66.25, 1234.5]

>>> del al:]

>>> a

[]
del can also be used to delete entire variables:
>>> del a

Referencing the name a hereafter is an error (at least until another value is assigned to it). We’ll find other uses for
del later.

5.3 Tuples and Sequences

We saw that lists and strings have many common properties, such as indexing and slicing operations. They are two
examples of sequence data types (see typesseq). Since Python is an evolving language, other sequence data types may
be added. There is also another standard sequence data type: the tuple.

A tuple consists of a number of values separated by commas, for instance:

>>> t = 12345, 54321, 'hello!'
>>> t[0]

12345

>>> t

34 Chapter 5. Data Structures

Python Tutorial, Release 2.7.10

(12345, 54321, 'hello!")
>>> # Tuples may be nested:
u=t, (1, 2, 3, 4, 5)
>>> U
((12345, 54321, 'hello!'"), (1, 2, 3, 4, 5))
>>> # Tuples are immutable:
t[0] = 88888
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> # but they can contain mutable objects:

v = ([1, 2, 31, [3, 2, 11)
>>> v
(ry, 2, 31, (3, 2, 11)

As you see, on output tuples are always enclosed in parentheses, so that nested tuples are interpreted correctly; they
may be input with or without surrounding parentheses, although often parentheses are necessary anyway (if the tuple
is part of a larger expression). It is not possible to assign to the individual items of a tuple, however it is possible to
create tuples which contain mutable objects, such as lists.

Though tuples may seem similar to lists, they are often used in different situations and for different purposes. Tuples
are immutable, and usually contain an heterogeneous sequence of elements that are accessed via unpacking (see later
in this section) or indexing (or even by attribute in the case of namedtuples). Lists are mutable, and their elements
are usually homogeneous and are accessed by iterating over the list.

A special problem is the construction of tuples containing O or 1 items: the syntax has some extra quirks to accom-
modate these. Empty tuples are constructed by an empty pair of parentheses; a tuple with one item is constructed by
following a value with a comma (it is not sufficient to enclose a single value in parentheses). Ugly, but effective. For
example:

>>> empty = ()

>>> singleton = 'hello', # <-— note trailing comma
>>> len (empty)

0

>>> len(singleton)

1

>>> singleton

('"hello',)

The statementt = 12345, 54321, ’'hello!’ isanexample of fuple packing: the values 12345, 54321 and
"hello!’ are packed together in a tuple. The reverse operation is also possible:

>>> x, y, z =t

This is called, appropriately enough, sequence unpacking and works for any sequence on the right-hand side. Sequence
unpacking requires the list of variables on the left to have the same number of elements as the length of the sequence.
Note that multiple assignment is really just a combination of tuple packing and sequence unpacking.

5.4 Sets

Python also includes a data type for sets. A set is an unordered collection with no duplicate elements. Basic uses
include membership testing and eliminating duplicate entries. Set objects also support mathematical operations like
union, intersection, difference, and symmetric difference.

Curly braces or the set () function can be used to create sets. Note: to create an empty set you have to use set (),
not { }; the latter creates an empty dictionary, a data structure that we discuss in the next section.

5.4. Sets 35

Python Tutorial, Release 2.7.10

Here is a brief demonstration:

>>> basket =
>>> fruit =
>>> fruit

set (['orange',

'orange', 'apple', 'pear', 'orange', 'banana']

create a set without duplicates

['apple',
set (basket)
'banana'l)

'pear', 'apple',

>>> 'orange' in fruit # fast membership testing
True

>>> 'crabgrass' in fruit

False

>>> # Demonstrate set operations on unique letters from two words
>>> a3 = set ('abracadabra')

>>> b = gset('alacazam')

>>> a # unique letters in a
set(['a', 'r', 'b', 'c', 'd'])

>>> a - b # letters in a but not in b
set(['r', 'd', 'b'])

>>> a | b # letters in either a or b
set(['a', 'c¢', 'xr', '4d', 'b', 'm', 'z', '1'])

>>> a & b # letters in both a and b
set(['a', 'c'l)

>>> a "~ b # letters in a or b but not both
set(['x', 'd', 'b', 'm', 'z', '1'])

Similarly to list comprehensions, set comprehensions are also supported:

>>> a = {xXx for xXx in 'abracadabra' if x not in 'abc'}
>>> a

set (['r', 'd'])

5.5 Dictionaries

Another useful data type built into Python is the dictionary (see typesmapping). Dictionaries are sometimes found in
other languages as “associative memories” or “associative arrays”. Unlike sequences, which are indexed by a range
of numbers, dictionaries are indexed by keys, which can be any immutable type; strings and numbers can always be
keys. Tuples can be used as keys if they contain only strings, numbers, or tuples; if a tuple contains any mutable object
either directly or indirectly, it cannot be used as a key. You can’t use lists as keys, since lists can be modified in place
using index assignments, slice assignments, or methods like append () and extend ().

It is best to think of a dictionary as an unordered set of key: value pairs, with the requirement that the keys are unique
(within one dictionary). A pair of braces creates an empty dictionary: { }. Placing a comma-separated list of key:value
pairs within the braces adds initial key:value pairs to the dictionary; this is also the way dictionaries are written on
output.

The main operations on a dictionary are storing a value with some key and extracting the value given the key. It is also
possible to delete a key:value pair with del. If you store using a key that is already in use, the old value associated
with that key is forgotten. It is an error to extract a value using a non-existent key.

The keys () method of a dictionary object returns a list of all the keys used in the dictionary, in arbitrary order (if
you want it sorted, just apply the sorted () function to it). To check whether a single key is in the dictionary, use
the in keyword.

Here is a small example using a dictionary:

36 Chapter 5. Data Structures

Python Tutorial, Release 2.7.10

>>> tel = {'jack': 4098, 'sape': 4139}

>>> tel['guido'] = 4127

>>> tel

{'sape': 4139, 'guido': 4127, 'Jack': 4098}
>>> tel['jack']

4098

>>> del tel['sape']

>>> tel['irv'] = 4127

>>> tel

{'guido': 4127, 'irv': 4127, 'Jack': 4098}
>>> tel.keys ()

['guido', 'irv', 'jack']
>>> 'guido' in tel
True

The dict () constructor builds dictionaries directly from sequences of key-value pairs:

>>> dict ([('sape', 4139), ('guido', 4127), ('jack', 4098)1])

{'sape': 4139, 'jack': 4098, 'guido': 4127}

In addition, dict comprehensions can be used to create dictionaries from arbitrary key and value expressions:

>>> {x: x*x2 for x in (2, 4, 6)}
{2: 4, 4: 16, 6: 36}

When the keys are simple strings, it is sometimes easier to specify pairs using keyword arguments:

>>> dict (sape=4139, guido=4127, Jjack=4098)
{'sape': 4139, 'jack': 4098, 'guido': 4127}

5.6 Looping Techniques

When looping through a sequence, the position index and corresponding value can be retrieved at the same time using
the enumerate () function.

>>> for i, v in enumerate(['tic', 'tac', 'toe']):
print i, v

0 tic

1 tac

2 toe

To loop over two or more sequences at the same time, the entries can be paired with the zip () function.

>>> questions = ['name', 'quest', 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for g, a in zip(questions, answers):
print 'What is your {0}? It is {1}.'.format(qg, a)

What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

To loop over a sequence in reverse, first specify the sequence in a forward direction and then call the reversed ()
function.

>>> for i in reversed(xrange(l,10,2)):
print i

5.6. Looping Techniques 37

Python Tutorial, Release 2.7.10

= W 0 J O -

To loop over a sequence in sorted order, use the sorted () function which returns a new sorted list while leaving the
source unaltered.

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for f in sorted(set (basket)):
print £
apple
banana
orange
pear

When looping through dictionaries, the key and corresponding value can be retrieved at the same time using the
iteritems () method.

>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.iteritems{() :
print k, v

gallahad the pure
robin the brave

To change a sequence you are iterating over while inside the loop (for example to duplicate certain items), it is
recommended that you first make a copy. Looping over a sequence does not implicitly make a copy. The slice notation
makes this especially convenient:

>>> words = ['cat', 'window', 'defenestrate']
>>> for w in words|[:]: # Loop over a slice copy of the entire 1list.
if len(w) > 6:
words.insert (0, w)
>>> words
["defenestrate', 'cat', 'window', 'defenestrate']

5.7 More on Conditions

The conditions used in while and if statements can contain any operators, not just comparisons.

The comparison operators in and not in check whether a value occurs (does not occur) in a sequence. The operators
is and is not compare whether two objects are really the same object; this only matters for mutable objects like
lists. All comparison operators have the same priority, which is lower than that of all numerical operators.

Comparisons can be chained. For example, a < b == c tests whether a is less than b and moreover b equals c.

Comparisons may be combined using the Boolean operators and and or, and the outcome of a comparison (or of any
other Boolean expression) may be negated with not. These have lower priorities than comparison operators; between
them, not has the highest priority and or the lowest, sothat A and not B or Cisequivalentto (A and (not
B)) or C.As always, parentheses can be used to express the desired composition.

38 Chapter 5. Data Structures

Python Tutorial, Release 2.7.10

The Boolean operators and and or are so-called short-circuit operators: their arguments are evaluated from left to
right, and evaluation stops as soon as the outcome is determined. For example, if A and C are true but B is false, A
and B and C does not evaluate the expression C. When used as a general value and not as a Boolean, the return
value of a short-circuit operator is the last evaluated argument.

It is possible to assign the result of a comparison or other Boolean expression to a variable. For example,

>>> stringl, string2, string3 = '', 'Trondheim', 'Hammer Dance'
>>> non_null = stringl or string2 or string3

>>> non_null

'Trondheim’

Note that in Python, unlike C, assignment cannot occur inside expressions. C programmers may grumble about this,
but it avoids a common class of problems encountered in C programs: typing = in an expression when == was intended.

5.8 Comparing Sequences and Other Types

Sequence objects may be compared to other objects with the same sequence type. The comparison uses lexicographical
ordering: first the first two items are compared, and if they differ this determines the outcome of the comparison; if
they are equal, the next two items are compared, and so on, until either sequence is exhausted. If two items to be
compared are themselves sequences of the same type, the lexicographical comparison is carried out recursively. If all
items of two sequences compare equal, the sequences are considered equal. If one sequence is an initial sub-sequence
of the other, the shorter sequence is the smaller (lesser) one. Lexicographical ordering for strings uses the ASCII
ordering for individual characters. Some examples of comparisons between sequences of the same type:

(1, 2, 3) < (1, 2, 4)

(1, 2, 31 < [1, 2, 4]

'ABC' < 'C' < 'Pascal' < 'Python'

(1, 2, 3, 4) < (1, 2, 4)

(1, 2) < (1, 2, -1)

(1, 2, 3) == (1.0, 2.0, 3.0)

(1, 2, ('aa', 'ab'")) < (1, 2, ('abc', 'a'), 4)

Note that comparing objects of different types is legal. The outcome is deterministic but arbitrary: the types are
ordered by their name. Thus, a list is always smaller than a string, a string is always smaller than a tuple, etc. ! Mixed
numeric types are compared according to their numeric value, so 0 equals 0.0, etc.

5.8. Comparing Sequences and Other Types 39

Python Tutorial, Release 2.7.10

40

Chapter 5. Data Structures

CHAPTER
SIX

MODULES

If you quit from the Python interpreter and enter it again, the definitions you have made (functions and variables) are
lost. Therefore, if you want to write a somewhat longer program, you are better off using a text editor to prepare the
input for the interpreter and running it with that file as input instead. This is known as creating a script. As your
program gets longer, you may want to split it into several files for easier maintenance. You may also want to use a
handy function that you’ve written in several programs without copying its definition into each program.

To support this, Python has a way to put definitions in a file and use them in a script or in an interactive instance of the
interpreter. Such a file is called a module; definitions from a module can be imported into other modules or into the
main module (the collection of variables that you have access to in a script executed at the top level and in calculator
mode).

A module is a file containing Python definitions and statements. The file name is the module name with the suffix
.py appended. Within a module, the module’s name (as a string) is available as the value of the global variable
__name___. For instance, use your favorite text editor to create a file called fibo.py in the current directory with
the following contents:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
a, b =20, 1
while b < n:
print b,
a, b =Db, atb

def fib2(n): # return Fibonacci series up to n
result = []
a, b =20, 1
while b < n:
result.append (b)
a, b =Db, atb
return result

Now enter the Python interpreter and import this module with the following command:
>>> import fibo

This does not enter the names of the functions defined in £ibo directly in the current symbol table; it only enters the
module name fibo there. Using the module name you can access the functions:

>>> fibo.fib(1000)

112358 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2 (100)

(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

41

Python Tutorial, Release 2.7.10

>>> fibo._ _name_
'fibo'

If you intend to use a function often you can assign it to a local name:

>>> fib = fibo.fib
>>> fib (500)
112 358 13 21 34 55 89 144 233 377

6.1 More on Modules

A module can contain executable statements as well as function definitions. These statements are intended to initialize
the module. They are executed only the first time the module name is encountered in an import statement. ! (They are
also run if the file is executed as a script.)

Each module has its own private symbol table, which is used as the global symbol table by all functions defined in
the module. Thus, the author of a module can use global variables in the module without worrying about accidental
clashes with a user’s global variables. On the other hand, if you know what you are doing you can touch a module’s
global variables with the same notation used to refer to its functions, modname . i temname.

Modules can import other modules. It is customary but not required to place all import statements at the beginning
of a module (or script, for that matter). The imported module names are placed in the importing module’s global
symbol table.

There is a variant of the import statement that imports names from a module directly into the importing module’s
symbol table. For example:

>>> from fibo import fib, fib2
>>> fib (500)
112 358 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the local symbol table (so in the example,
fibo is not defined).

There is even a variant to import all names that a module defines:

>>> from fibo import =
>>> fib (500)
112358 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore (_).

Note that in general the practice of importing « from a module or package is frowned upon, since it often causes poorly
readable code. However, it is okay to use it to save typing in interactive sessions.

Note: For efficiency reasons, each module is only imported once per interpreter session. Therefore, if you change your
modules, you must restart the interpreter — or, if it’s just one module you want to test interactively, use reload (),

e.g. reload (modulename).

6.1.1 Executing modules as scripts

When you run a Python module with

python fibo.py <arguments>

' Tn fact function definitions are also ‘statements’ that are ‘executed’; the execution of a module-level function definition enters the function
name in the module’s global symbol table.

42 Chapter 6. Modules

Python Tutorial, Release 2.7.10

the code in the module will be executed, just as if you imported it, but with the __name___setto"__main__". That
means that by adding this code at the end of your module:

if name == "_ main__ ":
import sys

fib (int (sys.argv[1l]))

you can make the file usable as a script as well as an importable module, because the code that parses the command
line only runs if the module is executed as the “main” file:

$ python fibo.py 50
112 35813 21 34

If the module is imported, the code is not run:

>>> import fibo
>>>

This is often used either to provide a convenient user interface to a module, or for testing purposes (running the module
as a script executes a test suite).

6.1.2 The Module Search Path

When a module named spam is imported, the interpreter first searches for a built-in module with that name. If not
found, it then searches for a file named spam. py in a list of directories given by the variable sys.path. sys.path
is initialized from these locations:

* the directory containing the input script (or the current directory).
* PYTHONPATH (a list of directory names, with the same syntax as the shell variable PATH).
* the installation-dependent default.

After initialization, Python programs can modify sys . path. The directory containing the script being run is placed
at the beginning of the search path, ahead of the standard library path. This means that scripts in that directory will
be loaded instead of modules of the same name in the library directory. This is an error unless the replacement is
intended. See section Standard Modules for more information.

6.1.3 “Compiled” Python files

As an important speed-up of the start-up time for short programs that use a lot of standard modules, if a file called
spam.pyc exists in the directory where spam. py is found, this is assumed to contain an already-“byte-compiled”
version of the module spam. The modification time of the version of spam. py used to create spam. pyc is recorded
in spam.pyc, and the . pyc file is ignored if these don’t match.

Normally, you don’t need to do anything to create the spam. pyc file. Whenever spam. py is successfully compiled,
an attempt is made to write the compiled version to spam. pyc. Itis not an error if this attempt fails; if for any reason
the file is not written completely, the resulting spam. pyc file will be recognized as invalid and thus ignored later. The
contents of the spam. pyc file are platform independent, so a Python module directory can be shared by machines of
different architectures.

Some tips for experts:

* When the Python interpreter is invoked with the —O flag, optimized code is generated and stored in . pyo files.
The optimizer currently doesn’t help much; it only removes assert statements. When —0O is used, all bytecode
is optimized; . pyc files are ignored and . py files are compiled to optimized bytecode.

* Passing two —O flags to the Python interpreter (-00) will cause the bytecode compiler to perform optimizations
that could in some rare cases result in malfunctioning programs. Currently only ___doc___ strings are removed

6.1. More on Modules 43

Python Tutorial, Release 2.7.10

6.2

from the bytecode, resulting in more compact .pyo files. Since some programs may rely on having these
available, you should only use this option if you know what you’re doing.

A program doesn’t run any faster when it is read from a . pyc or . pyo file than when it is read from a . py file;
the only thing that’s faster about . pyc or . pyo files is the speed with which they are loaded.

When a script is run by giving its name on the command line, the bytecode for the script is never written to a
.pyc or .pyo file. Thus, the startup time of a script may be reduced by moving most of its code to a module
and having a small bootstrap script that imports that module. It is also possible to name a . pyc or .pyo file
directly on the command line.

It is possible to have a file called spam.pyc (or spam.pyo when -0 is used) without a file spam. py for the
same module. This can be used to distribute a library of Python code in a form that is moderately hard to reverse
engineer.

The module compileall can create . pyc files (or . pyo files when -0 is used) for all modules in a directory.

Standard Modules

Python comes with a library of standard modules, described in a separate document, the Python Library Reference
(“Library Reference” hereafter). Some modules are built into the interpreter; these provide access to operations that are
not part of the core of the language but are nevertheless built in, either for efficiency or to provide access to operating
system primitives such as system calls. The set of such modules is a configuration option which also depends on the
underlying platform. For example, the winreg module is only provided on Windows systems. One particular module
deserves some attention: sys, which is built into every Python interpreter. The variables sys.psl and sys.ps2
define the strings used as primary and secondary prompts:

>>> import sys

>>>
'>>>
>>>

' o o o
>>>
C> p
Yuck
c>

sys.psl

Sys.ps2
A}
sys.psl = 'C> !
rint 'Yuck!'
i

These two variables are only defined if the interpreter is in interactive mode.

The variable sy s .path is a list of strings that determines the interpreter’s search path for modules. It is initialized to
a default path taken from the environment variable PYTHONPATH, or from a built-in default if PYTHONPATH is not
set. You can modify it using standard list operations:

>>> import sys

>>>

6.3

sys.path.append('/ufs/guido/lib/python'")

The dir () Function

The built-in function dir () is used to find out which names a module defines. It returns a sorted list of strings:

>>> import fibo, sys

>>> dir (fibo)

['"__name__ ', 'fib', 'fib2']

>>> dir(sys)

['__displayhook__"', '_ doc ', '__excepthook__ ', '__name__', '_ _package_ ',

44

Chapter 6. Modules

Python Tutorial, Release 2.7.10

' stderr_ "',

_current_frames', '_getframe', '_mercurial', 'api_version', 'argv',
'builtin_module_names', 'byteorder', 'call_tracing', 'callstats',
'copyright', 'displayhook', 'dont_write_bytecode', 'exc_clear', 'exc_info',
'exc_traceback', 'exc_type', 'exc_value', 'excepthook', 'exec_prefix',
'executable', 'exit', 'flags', 'float_info', 'float_repr_style',
'getcheckinterval', 'getdefaultencoding', 'getdlopenflags',
'getfilesystemencoding', 'getobjects', 'getprofile', 'getrecursionlimit',
'getrefcount', 'getsizeof', 'gettotalrefcount', 'gettrace', 'hexversion',
'long_info', 'maxint', 'maxsize', 'maxunicode', 'meta_path', 'modules',
'path', 'path_hooks', 'path_importer_cache', 'platform', 'prefix', 'psl',
'py3kwarning', 'setcheckinterval', 'setdlopenflags', 'setprofile',
'setrecursionlimit', 'settrace', 'stderr', 'stdin', 'stdout', 'subversion',
'version', 'version_info', 'warnoptions']

' stdin ! ' stdout ! ' _clear_type_cache',

C— _

Without arguments, dir () lists the names you have defined currently:

>>> a = [1, 2, 3, 4, 5]

>>> import fibo

>>> fib = fibo.fib

>>> dir ()

['__builtins__ ', '_name__', '_ package__', 'a', 'fib', 'fibo', 'sys']

Note that it lists all types of names: variables, modules, functions, etc.

dir () does not list the names of built-in functions and variables. If you want a list of those, they are defined in the
standard module __builtin_ :

>>> import _ builtin_

>>> dir(__builtin_)

['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',
'BufferError', 'BytesWarning', 'DeprecationWarning', 'EOFError',
'Ellipsis', 'EnvironmentError', 'Exception', 'False', 'FloatingPointError',
'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError', 'ImportWarning',
'IndentationError', 'IndexError', 'KeyError', 'KeyboardInterrupt',
'LookupError', 'MemoryError', 'NameError', 'None', 'NotImplemented',
'NotImplementedError', 'OSError', 'OverflowError',
'PendingDeprecationWarning', 'ReferenceError', 'RuntimeError',
'RuntimeWarning', 'StandardError', 'StopIteration', 'SyntaxError',
'SyntaxWarning', 'SystemError', 'SystemExit', 'TabError', 'True',
'TypeError', 'UnboundLocalError', 'UnicodeDecodeError',
'UnicodeEncodeError', 'UnicodeError', 'UnicodeTranslateError',
'UnicodeWarning', 'UserWarning', 'ValueError', 'Warning',
'ZeroDivisionError', '_', '__debug__', '__doc__', '__import_ ',

' _name__ ', '__package__', 'abs', 'all', 'any', 'apply', 'basestring',
'bin', 'bool', 'buffer', 'bytearray', 'bytes', 'callable', 'chr',
'classmethod', 'cmp', 'coerce', 'compile', 'complex', 'copyright',
'credits', 'delattr', 'dict', 'dir', 'divmod', 'enumerate', 'eval',
'execfile', 'exit', 'file', 'filter', 'float', 'format', 'frozenset',
'getattr', 'globals', 'hasattr', 'hash', 'help', 'hex', 'id', 'input',
'int', 'intern', 'isinstance', 'issubclass', 'iter', 'len', 'license',
'list', 'locals', 'long', 'map', 'max', 'memoryview', 'min', 'next',
'object', 'oct', 'open', 'ord', 'pow', 'print', 'property', 'quit',
'range', 'raw_input', 'reduce', 'reload', 'repr', 'reversed', 'round',
'set', 'setattr', 'slice', 'sorted', 'staticmethod', 'str', 'sum', 'super',
'tuple', 'type', 'unichr', 'unicode', 'wvars', 'xrange', 'zip']

6.3. The dir () Function 45

Python Tutorial, Release 2.7.10

6.4 Packages

Packages are a way of structuring Python’s module namespace by using “dotted module names”. For example, the
module name A .B designates a submodule named B in a package named A. Just like the use of modules saves the
authors of different modules from having to worry about each other’s global variable names, the use of dotted module
names saves the authors of multi-module packages like NumPy or the Python Imaging Library from having to worry
about each other’s module names.

Suppose you want to design a collection of modules (a “package”) for the uniform handling of sound files and sound
data. There are many different sound file formats (usually recognized by their extension, for example: .wav, .aiff,
. au), so you may need to create and maintain a growing collection of modules for the conversion between the various
file formats. There are also many different operations you might want to perform on sound data (such as mixing,
adding echo, applying an equalizer function, creating an artificial stereo effect), so in addition you will be writing a
never-ending stream of modules to perform these operations. Here’s a possible structure for your package (expressed
in terms of a hierarchical filesystem):

sound/ Top-level package
__init__ .py Initialize the sound package
formats/ Subpackage for file format conversions
__init__ .py

wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py

effects/ Subpackage for sound effects
__init__ .py
echo.py
surround.py
reverse.py

filters/ Subpackage for filters
__init_ .py
equalizer.py
vocoder.py
karaoke.py

When importing the package, Python searches through the directories on sys.path looking for the package subdi-
rectory.

The __init__ .py files are required to make Python treat the directories as containing packages; this is done to
prevent directories with a common name, such as st ring, from unintentionally hiding valid modules that occur later
on the module search path. In the simplest case, __init___ .py can just be an empty file, but it can also execute
initialization code for the package or setthe __all__ variable, described later.

Users of the package can import individual modules from the package, for example:

import sound.effects.echo

This loads the submodule sound.effects.echo. It must be referenced with its full name.
sound.effects.echo.echofilter (input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is:

46 Chapter 6. Modules

Python Tutorial, Release 2.7.10

from sound.effects import echo

This also loads the submodule echo, and makes it available without its package prefix, so it can be used as follows:
echo.echofilter (input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:

from sound.effects.echo import echofilter

Again, this loads the submodule echo, but this makes its function echofilter () directly available:
echofilter (input, output, delay=0.7, atten=4)

Note that when using from package import item,the item can be either a submodule (or subpackage) of the
package, or some other name defined in the package, like a function, class or variable. The import statement first
tests whether the item is defined in the package; if not, it assumes it is a module and attempts to load it. If it fails to
find it, an ImportError exception is raised.

Contrarily, when using syntax like import item.subitem.subsubitem, each item except for the last must
be a package; the last item can be a module or a package but can’t be a class or function or variable defined in the
previous item.

6.4.1 Importing * From a Package

Now what happens when the user writes from sound.effects import =? Ideally, one would hope that this
somehow goes out to the filesystem, finds which submodules are present in the package, and imports them all. This
could take a long time and importing sub-modules might have unwanted side-effects that should only happen when
the sub-module is explicitly imported.

The only solution is for the package author to provide an explicit index of the package. The import statement
uses the following convention: if a package’s __init__ .py code defines a list named __all__, it is taken to
be the list of module names that should be imported when from package import = is encountered. It is up
to the package author to keep this list up-to-date when a new version of the package is released. Package authors
may also decide not to support it, if they don’t see a use for importing * from their package. For example, the file
sound/effects/__init__ .py could contain the following code:

all = ["echo", "surround", "reverse"]

This would mean that from sound.effects import x would import the three named submodules of the
sound package.

If _ _all__ is not defined, the statement from sound.effects import = does not import all submodules
from the package sound.effects into the current namespace; it only ensures that the package sound.effects
has been imported (possibly running any initialization code in __init__ .py) and then imports whatever names are
defined in the package. This includes any names defined (and submodules explicitly loaded) by __init__ .py. It
also includes any submodules of the package that were explicitly loaded by previous import statements. Consider
this code:

import sound.effects.echo
import sound.effects.surround
from sound.effects import =

In this example, the echo and surround modules are imported in the current namespace because they are defined in
the sound.effects package when the from. . . import statement is executed. (This also works when __all
is defined.)

Although certain modules are designed to export only names that follow certain patterns when you use import =, it
is still considered bad practise in production code.

6.4. Packages 47

Python Tutorial, Release 2.7.10

Remember, there is nothing wrong with using from Package import specific_submodule! In fact, this
is the recommended notation unless the importing module needs to use submodules with the same name from different
packages.

6.4.2 Intra-package References

The submodules often need to refer to each other. For example, the surround module might use the echo module.
In fact, such references are so common that the import statement first looks in the containing package before looking
in the standard module search path. Thus, the surround module can simply use import echo or from echo
import echofilter. If the imported module is not found in the current package (the package of which the
current module is a submodule), the import statement looks for a top-level module with the given name.

When packages are structured into subpackages (as with the sound package in the example), you can use absolute
imports to refer to submodules of siblings packages. For example, if the module sound. filters.vocoder needs
to use the echo module in the sound.effects package, it canuse from sound.effects import echo.

Starting with Python 2.5, in addition to the implicit relative imports described above, you can write explicit relative
imports with the from module import name form of import statement. These explicit relative imports use
leading dots to indicate the current and parent packages involved in the relative import. From the surround module
for example, you might use:

from . import echo
from .. import formats
from ..filters import equalizer

Note that both explicit and implicit relative imports are based on the name of the current module. Since the name
of the main module is always "__main___", modules intended for use as the main module of a Python application
should always use absolute imports.

6.4.3 Packages in Multiple Directories

Packages support one more special attribute, __path__. This is initialized to be a list containing the name of the
directory holding the package’s __init__ .py before the code in that file is executed. This variable can be modified;
doing so affects future searches for modules and subpackages contained in the package.

While this feature is not often needed, it can be used to extend the set of modules found in a package.

48 Chapter 6. Modules

CHAPTER
SEVEN

INPUT AND OUTPUT

There are several ways to present the output of a program; data can be printed in a human-readable form, or written to
a file for future use. This chapter will discuss some of the possibilities.

7.1 Fancier Output Formatting

So far we’ve encountered two ways of writing values: expression statements and the print statement. (A third way
is using the write () method of file objects; the standard output file can be referenced as sys.stdout. See the
Library Reference for more information on this.)

Often you’ll want more control over the formatting of your output than simply printing space-separated values. There
are two ways to format your output; the first way is to do all the string handling yourself; using string slicing and
concatenation operations you can create any layout you can imagine. The string types have some methods that perform
useful operations for padding strings to a given column width; these will be discussed shortly. The second way is to
use the str.format () method.

The st ring module contains a Template class which offers yet another way to substitute values into strings.

One question remains, of course: how do you convert values to strings? Luckily, Python has ways to convert any value
to a string: pass it to the repr () or str () functions.

The str () function is meant to return representations of values which are fairly human-readable, while repr ()
is meant to generate representations which can be read by the interpreter (or will force a SyntaxError if there
is no equivalent syntax). For objects which don’t have a particular representation for human consumption, str ()
will return the same value as repr (). Many values, such as numbers or structures like lists and dictionaries, have
the same representation using either function. Strings and floating point numbers, in particular, have two distinct
representations.

Some examples:

>>> s = 'Hello, world.'
>>> str(s)

'Hello, world.'

>>> repr(s)

"'Hello, world.'"

>>> str(1.0/7.0)
'0.142857142857"

>>> repr(1.0/7.0)
'0.14285714285714285"
>>> x = 10 % 3.25

>>> y = 200 % 200

>>> s = 'The value of x is ' + repr(x) + ', and y is ' + repr(y) + '...'
>>> print s

49

Python Tutorial, Release 2.7.10

The value of x is 32.5, and y is 40000...

>>> # The repr() of a string adds string quotes and backslashes:
hello = 'hello, world\n'

>>> hellos = repr(hello)

>>> print hellos

'hello, world\n'

>>> # The argument to repr() may be any Python object:
repr((x, y, ('spam', 'eggs')))

"(32.5, 40000, ('spam', 'eggs'))"

Here are two ways to write a table of squares and cubes:

>>> for x in range(l, 11):
print repr (x).rjust(2), repr (xxx).rjust(3),
Note trailing comma on previous line
print repr (x*x*x) .rjust (4)

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
749 343
8 64 512
9 81 729
10 100 1000

>>> for x in range(1l,11):
print '{0:2d} {1:3d} {2:4d}'.format (x, xX*xX, X*X*X)

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

10 100 1000

(Note that in the first example, one space between each column was added by the way print works: it always adds
spaces between its arguments.)

This example demonstrates the str.rjust () method of string objects, which right-justifies a string in a field of a
given width by padding it with spaces on the left. There are similar methods str.1just () and str.center ().
These methods do not write anything, they just return a new string. If the input string is too long, they don’t trun-
cate it, but return it unchanged; this will mess up your column lay-out but that’s usually better than the alternative,
which would be lying about a value. (If you really want truncation you can always add a slice operation, as in
x.1ljust (n) [:n].)

There is another method, str.zfi11 (), which pads a numeric string on the left with zeros. It understands about
plus and minus signs:

>>> '12'.z£fil11 (5)
'00012"

50 Chapter 7. Input and Output

Python Tutorial, Release 2.7.10

>>> '-3.14".z£i11(7)
'-003.14"

>>> '3.14159265359"'.z£f111(5)
'3.14159265359"

Basic usage of the str. format () method looks like this:

>>> print 'We are the {} who say "{}!"'.format ('knights', 'Ni')
We are the knights who say "Ni!"

The brackets and characters within them (called format fields) are replaced with the objects passed into the
str.format () method. A number in the brackets refers to the position of the object passed into the
str.format () method.

>>> print '{0} and {1}'.format ('spam', 'eggs')
spam and eggs
>>> print '{1} and {0}'.format ('spam', 'eggs')
eggs and spam

If keyword arguments are used in the str. format () method, their values are referred to by using the name of the
argument.

>>> print 'This {food} is {adjective}.'.format (
.. food="'spam', adjective='absolutely horrible")
This spam is absolutely horrible.

Positional and keyword arguments can be arbitrarily combined:

>>> print 'The story of {0}, {1}, and {other}.'.format ('Bill', 'Manfred',
ce other="'Georg')
The story of Bill, Manfred, and Georg.

" 1s’ (apply str())and’ !r’ (apply repr ()) can be used to convert the value before it is formatted.

>>> import math

>>> print 'The value of PI is approximately {}.'.format (math.pi)
The value of PI is approximately 3.14159265359.
>>> print 'The value of PI is approximately {!r}.'.format (math.pi)

The value of PI is approximately 3.141592653589793.

An optional ’ :* and format specifier can follow the field name. This allows greater control over how the value is
formatted. The following example rounds Pi to three places after the decimal.

>>> import math
>>> print 'The value of PI is approximately {0:.3f}.'.format (math.pi)
The value of PI is approximately 3.142.

Passing an integer after the / : 7 will cause that field to be a minimum number of characters wide. This is useful for
making tables pretty.

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 7678}
>>> for name, phone in table.items() :
print '{0:10} ==> {1:10d}"'.format (name, phone)

Jack ==> 4098

Dcab ==> 7678
Sjoerd ==> 4127

If you have a really long format string that you don’t want to split up, it would be nice if you could reference the
variables to be formatted by name instead of by position. This can be done by simply passing the dict and using square
brackets ’ []’ to access the keys

7.1. Fancier Output Formatting 51

Python Tutorial, Release 2.7.10

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print ('Jack: {0[Jack]:d}; Sjoerd: {0[Sjoerd]:d}; '

c 'Dcab: {0[Dcab]:d}'.format (table))

Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This could also be done by passing the table as keyword arguments with the ‘**’ notation.

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print 'Jack: {Jack:d}; Sjoerd: {Sjoerd:d}; Dcab: {Dcab:d}'.format (xxtable)
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This is particularly useful in combination with the built-in function vars (), which returns a dictionary containing all
local variables.

For a complete overview of string formatting with str. format (), see formatstrings.

7.1.1 Old string formatting

The % operator can also be used for string formatting. It interprets the left argument much like a sprint £ () -style
format string to be applied to the right argument, and returns the string resulting from this formatting operation. For
example:

>>> import math
>>> print 'The value of PI is approximately .' % math.pi
The value of PI 1is approximately 3.142.

More information can be found in the string-formatting section.

7.2 Reading and Writing Files

open () returns a file object, and is most commonly used with two arguments: open (filename, mode).

>>> f = open('workfile', 'w')
>>> print £
<open file 'workfile', mode 'w' at 80a0960>

The first argument is a string containing the filename. The second argument is another string containing a few charac-
ters describing the way in which the file will be used. mode can be ’ r’ when the file will only be read, ’ w’ for only
writing (an existing file with the same name will be erased), and ’ a’ opens the file for appending; any data written
to the file is automatically added to the end. ' r+’ opens the file for both reading and writing. The mode argument is
optional; ’ r’ will be assumed if it’s omitted.

On Windows, ' b’ appended to the mode opens the file in binary mode, so there are also modes like ’ rb’, " wb’,
and ' r+b’ . Python on Windows makes a distinction between text and binary files; the end-of-line characters in text
files are automatically altered slightly when data is read or written. This behind-the-scenes modification to file data
is fine for ASCII text files, but it’ll corrupt binary data like that in JPEG or EXE files. Be very careful to use binary
mode when reading and writing such files. On Unix, it doesn’t hurt to append a ' b’ to the mode, so you can use it
platform-independently for all binary files.

7.2.1 Methods of File Objects

The rest of the examples in this section will assume that a file object called f has already been created.

To read a file’s contents, call £.read (size), which reads some quantity of data and returns it as a string. size is an
optional numeric argument. When size is omitted or negative, the entire contents of the file will be read and returned;

52 Chapter 7. Input and Output

Python Tutorial, Release 2.7.10

it’s your problem if the file is twice as large as your machine’s memory. Otherwise, at most size bytes are read and
returned. If the end of the file has been reached, £ .read () will return an empty string ("").

>>> f.read()
'This is the entire file.\n'

>>> f.read()
T

f.readline () reads a single line from the file; a newline character (\n) is left at the end of the string, and is only
omitted on the last line of the file if the file doesn’t end in a newline. This makes the return value unambiguous; if
f.readline () returns an empty string, the end of the file has been reached, while a blank line is represented by
’\n’, a string containing only a single newline.

>>> f.readline ()

'This is the first line of the file.\n'
>>> f.readline ()

'Second line of the file\n'

>>> f.readline ()

For reading lines from a file, you can loop over the file object. This is memory efficient, fast, and leads to simple code:
>>> for line in f:
print line,
This is the first line of the file.
Second line of the file
If you want to read all the lines of a file in a list you can alsouse 1ist (f) or £.readlines ().
f.write (string) writes the contents of string to the file, returning None.
>>> f.write('This is a test\n')
To write something other than a string, it needs to be converted to a string first:

>>> value = ('the answer', 42)
>>> s = str(value)
>>> f.write(s)

f.tell () returns an integer giving the file object’s current position in the file, measured in bytes from the beginning
of the file. To change the file object’s position, use f.seek (offset, from_what). The position is computed
from adding offset to a reference point; the reference point is selected by the from_what argument. A from_what value
of 0 measures from the beginning of the file, 1 uses the current file position, and 2 uses the end of the file as the
reference point. from_what can be omitted and defaults to 0, using the beginning of the file as the reference point.

>>> f = open('workfile', 'r+')

>>> f.write ('0123456789%abcdef ")

>>> f.seek (5) # Go to the 6th byte in the file
>>> f.read (1)

151

>>> f.seek (-3, 2) # Go to the 3rd byte before the end

>>> f.read(1l)
Al d |l
When you’re done with a file, call £.close () to close it and free up any system resources taken up by the open file.

After calling £.close (), attempts to use the file object will automatically fail.

>>> f.close()
>>> f.read()
Traceback (most recent call last):

7.2. Reading and Writing Files 53

Python Tutorial, Release 2.7.10

File "<stdin>", line 1, in ?
ValueError: I/0 operation on closed file

It is good practice to use the with keyword when dealing with file objects. This has the advantage that the file is
properly closed after its suite finishes, even if an exception is raised on the way. It is also much shorter than writing
equivalent t ry-finally blocks:

>>> with open('workfile', 'r') as f:
.. read_data = f.read()

>>> f.closed

True

File objects have some additional methods, such as isatty () and truncate () which are less frequently used;
consult the Library Reference for a complete guide to file objects.

7.2.2 Saving structured data with json

Strings can easily be written to and read from a file. Numbers take a bit more effort, since the read () method only
returns strings, which will have to be passed to a function like int (), which takes a string like * 123’ and returns
its numeric value 123. When you want to save more complex data types like nested lists and dictionaries, parsing and
serializing by hand becomes complicated.

Rather than having users constantly writing and debugging code to save complicated data types to files, Python allows
you to use the popular data interchange format called JSON (JavaScript Object Notation). The standard module called
json can take Python data hierarchies, and convert them to string representations; this process is called serializing.
Reconstructing the data from the string representation is called deserializing. Between serializing and deserializing,
the string representing the object may have been stored in a file or data, or sent over a network connection to some
distant machine.

Note: The JSON format is commonly used by modern applications to allow for data exchange. Many programmers
are already familiar with it, which makes it a good choice for interoperability.

If you have an object %, you can view its JSON string representation with a simple line of code:

>>> json.dumps ([1l, 'simple', 'list'])
'[1, "simple", "list"]'

Another variant of the dumps () function, called dump (), simply serializes the object to a file. So if £ is a file object
opened for writing, we can do this:

Json.dump (x, f)
To decode the object again, if £ is a file object which has been opened for reading:
x = Jjson.load(f)

This simple serialization technique can handle lists and dictionaries, but serializing arbitrary class instances in JSON
requires a bit of extra effort. The reference for the json module contains an explanation of this.

See also:
pickle - the pickle module

Contrary to JSON, pickle is a protocol which allows the serialization of arbitrarily complex Python objects. As such,
it is specific to Python and cannot be used to communicate with applications written in other languages. It is also
insecure by default: deserializing pickle data coming from an untrusted source can execute arbitrary code, if the data
was crafted by a skilled attacker.

54 Chapter 7. Input and Output

http://json.org

CHAPTER
EIGHT

ERRORS AND EXCEPTIONS

Until now error messages haven’t been more than mentioned, but if you have tried out the examples you have probably
seen some. There are (at least) two distinguishable kinds of errors: syntax errors and exceptions.

8.1 Syntax Errors

Syntax errors, also known as parsing errors, are perhaps the most common kind of complaint you get while you are
still learning Python:

>>> while True print 'Hello world'
File "<stdin>", line 1, in *?
while True print 'Hello world'

A

SyntaxError: invalid syntax

The parser repeats the offending line and displays a little ‘arrow’ pointing at the earliest point in the line where the
error was detected. The error is caused by (or at least detected at) the token preceding the arrow: in the example,
the error is detected at the keyword print, since a colon (’ : /) is missing before it. File name and line number are
printed so you know where to look in case the input came from a script.

8.2 Exceptions

Even if a statement or expression is syntactically correct, it may cause an error when an attempt is made to execute it.
Errors detected during execution are called exceptions and are not unconditionally fatal: you will soon learn how to
handle them in Python programs. Most exceptions are not handled by programs, however, and result in error messages
as shown here:

>>> 10 *« (1/0)

Traceback (most recent call last):
File "<stdin>", line 1, in ?

ZeroDivisionError: integer division or modulo by zero

>>> 4 + spamx3

Traceback (most recent call last):
File "<stdin>", line 1, in ?

NameError: name 'spam' is not defined

>>> '2' + 2

Traceback (most recent call last):
File "<stdin>", line 1, in ?

TypeError: cannot concatenate 'str'

and 'int' objects

55

Python Tutorial, Release 2.7.10

The last line of the error message indicates what happened. Exceptions come in different types, and the type is printed
as part of the message: the types in the example are ZeroDivisionError, NameError and TypeError. The
string printed as the exception type is the name of the built-in exception that occurred. This is true for all built-in
exceptions, but need not be true for user-defined exceptions (although it is a useful convention). Standard exception
names are built-in identifiers (not reserved keywords).

The rest of the line provides detail based on the type of exception and what caused it.

The preceding part of the error message shows the context where the exception happened, in the form of a stack
traceback. In general it contains a stack traceback listing source lines; however, it will not display lines read from
standard input.

bltin-exceptions lists the built-in exceptions and their meanings.

8.3 Handling Exceptions

It is possible to write programs that handle selected exceptions. Look at the following example, which asks the user
for input until a valid integer has been entered, but allows the user to interrupt the program (using Control-C
or whatever the operating system supports); note that a user-generated interruption is signalled by raising the
KeyboardInterrupt exception.

>>> while True:

try:
x = int (raw_input ("Please enter a number: "))
break
except ValueError:
print "Oops! That was no valid number. Try again..."

The t ry statement works as follows.
* First, the try clause (the statement(s) between the t rv and except keywords) is executed.
* If no exception occurs, the except clause is skipped and execution of the t ry statement is finished.

 If an exception occurs during execution of the try clause, the rest of the clause is skipped. Then if its type
matches the exception named after the except keyword, the except clause is executed, and then execution
continues after the t ry statement.

* If an exception occurs which does not match the exception named in the except clause, it is passed on to outer
try statements; if no handler is found, it is an unhandled exception and execution stops with a message as
shown above.

A try statement may have more than one except clause, to specify handlers for different exceptions. At most one
handler will be executed. Handlers only handle exceptions that occur in the corresponding try clause, not in other
handlers of the same try statement. An except clause may name multiple exceptions as a parenthesized tuple, for
example:

except (RuntimeError, TypeError, NameError):
pass

Note that the parentheses around this tuple are required, because except ValueError, e: was the syntax
used for what is normally written as except ValueError as e: in modern Python (described below). The
old syntax is still supported for backwards compatibility. This means except RuntimeError, TypeError
is not equivalent to except (RuntimeError, TypeError): but to except RuntimeError as
TypeError: which is not what you want.

56 Chapter 8. Errors and Exceptions

Python Tutorial, Release 2.7.10

The last except clause may omit the exception name(s), to serve as a wildcard. Use this with extreme caution, since it
is easy to mask a real programming error in this way! It can also be used to print an error message and then re-raise
the exception (allowing a caller to handle the exception as well):

import sys

try:

f = open('myfile.txt")

s = f.readline()

i = int(s.strip())
except IOError as e:

print "I/0 error ({0}): {1}".format (e.errno, e.strerror)
except ValueError:

print "Could not convert data to an integer."
except:

print "Unexpected error:", sys.exc_info() [0]

raise

The try ... except statement has an optional else clause, which, when present, must follow all except clauses. It is
useful for code that must be executed if the try clause does not raise an exception. For example:

for arg in sys.argv[l:]:

try:
f = open(arg, 'r')

except IOError:
print 'cannot open', arg

else:
print arg, 'has', len(f.readlines()), 'lines'
f.close()

The use of the else clause is better than adding additional code to the try clause because it avoids accidentally
catching an exception that wasn’t raised by the code being protected by the try ... except statement.

When an exception occurs, it may have an associated value, also known as the exception’s argument. The presence
and type of the argument depend on the exception type.

The except clause may specify a variable after the exception name (or tuple). The variable is bound to an exception in-
stance with the arguments stored in instance . args. For convenience, the exception instance defines __str__ ()
so the arguments can be printed directly without having to reference .args.

One may also instantiate an exception first before raising it and add any attributes to it as desired.

>>> try:
raise Exception('spam', 'eggs')
except Exception as inst:

print type (inst) # the exception instance

print inst.args # arguments stored in .args

print inst # __str.__ allows args to be printed directly
X, y = inst.args

print 'x ="', x

print 'y =', y

<type 'exceptions.Exception'>
("spam', 'eggs')

("spam', 'eggs')

X = spam

Yy = €ggs

8.3. Handling Exceptions 57

Python Tutorial, Release 2.7.10

If an exception has an argument, it is printed as the last part (‘detail’) of the message for unhandled exceptions.

Exception handlers don’t just handle exceptions if they occur immediately in the try clause, but also if they occur
inside functions that are called (even indirectly) in the try clause. For example:

>>> def this_fails():
x = 1/0

>>> try:
this_fails{()

except ZeroDivisionError as detail:
print 'Handling run-time error:', detail

Handling run-time error: integer division or modulo by zero

8.4 Raising Exceptions

The raise statement allows the programmer to force a specified exception to occur. For example:

>>> raise NameError ('HiThere')
Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: HiThere

The sole argument to raise indicates the exception to be raised. This must be either an exception instance or an
exception class (a class that derives from Exception).

If you need to determine whether an exception was raised but don’t intend to handle it, a simpler form of the raise
statement allows you to re-raise the exception:

>>> try:
raise NameError ('HiThere')
except NameError:
print 'An exception flew by!'
raise

An exception flew by!

Traceback (most recent call last):
File "<stdin>", line 2, in ?

NameError: HiThere

8.5 User-defined Exceptions

Programs may name their own exceptions by creating a new exception class (see Classes for more about Python
classes). Exceptions should typically be derived from the Except ion class, either directly or indirectly. For example:

>>> class MyError (Exception) :
def _ init_ (self, wvalue):
self.value = value
def = str_ (self):
return repr (self.value)
>>> try:
raise MyError (2x2)

58 Chapter 8. Errors and Exceptions

Python Tutorial, Release 2.7.10

except MyError as e:
print 'My exception occurred, value:', e.value

My exception occurred, value: 4
>>> raise MyError ('oops!'")
Traceback (most recent call last):

File "<stdin>", line 1, in °?
__main__ .MyError: 'oops!'

In this example, the default __init__ () of Exception has been overridden. The new behavior simply creates the
value attribute. This replaces the default behavior of creating the args attribute.

Exception classes can be defined which do anything any other class can do, but are usually kept simple, often only
offering a number of attributes that allow information about the error to be extracted by handlers for the exception.
When creating a module that can raise several distinct errors, a common practice is to create a base class for exceptions
defined by that module, and subclass that to create specific exception classes for different error conditions:

class Error (Exception) :
"""Base class for exceptions in this module."""
pass

class InputError (Error):
"""Exception raised for errors in the input.

Attributes:
expr —- 1input expression in which the error occurred
msg —— explanation of the error

def _ init__ (self, expr, msg):

self.expr = expr
self.msg = msg

class TransitionError (Error) :
"""Raised when an operation attempts a state transition that's not

allowed.
Attributes:
prev —-—- state at beginning of transition
next —--— attempted new state
msg —— explanation of why the specific transition is not allowed
mmn
def _ init__ (self, prev, next, msqg):
self.prev = prev
self.next = next

self.msg = msg
Most exceptions are defined with names that end in “Error,” similar to the naming of the standard exceptions.

Many standard modules define their own exceptions to report errors that may occur in functions they define. More
information on classes is presented in chapter Classes.

8.5. User-defined Exceptions 59

Python Tutorial, Release 2.7.10

8.6 Defining Clean-up Actions

The try statement has another optional clause which is intended to define clean-up actions that must be executed
under all circumstances. For example:

>>> try:
raise KeyboardInterrupt
finally:
print 'Goodbye, world!'

Goodbye, world!

KeyboardInterrupt

Traceback (most recent call last):
File "<stdin>", line 2, in ?

A finally clause is always executed before leaving the t ry statement, whether an exception has occurred or not. When
an exception has occurred in the t ry clause and has not been handled by an except clause (or it has occurred in a
except or else clause), it is re-raised after the finally clause has been executed. The finally clause is also
executed “on the way out” when any other clause of the t ry statement is left via a break, continue or return
statement. A more complicated example (having except and finally clauses in the same try statement works
as of Python 2.5)

>>> def divide(x, vy):
try:
result = x / y
except ZeroDivisionError:
print "division by zero!"
else:
print "result is", result
finally:
print "executing finally clause"
>>> divide (2, 1)
result is 2
executing finally clause
>>> divide (2, 0)
division by zero!
executing finally clause
>>> divide("2", "1")
executing finally clause
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "<stdin>", line 3, in divide
TypeError: unsupported operand type(s) for /: 'str' and 'str'

As you can see, the finally clause is executed in any event. The TypeError raised by dividing two strings is not
handled by the except clause and therefore re-raised after the finally clause has been executed.

In real world applications, the finally clause is useful for releasing external resources (such as files or network
connections), regardless of whether the use of the resource was successful.

60 Chapter 8. Errors and Exceptions

Python Tutorial, Release 2.7.10

8.7 Predefined Clean-up Actions

Some objects define standard clean-up actions to be undertaken when the object is no longer needed, regardless of
whether or not the operation using the object succeeded or failed. Look at the following example, which tries to open
a file and print its contents to the screen.

for line in open("myfile.txt"):
print line,

The problem with this code is that it leaves the file open for an indeterminate amount of time after the code has finished
executing. This is not an issue in simple scripts, but can be a problem for larger applications. The with statement
allows objects like files to be used in a way that ensures they are always cleaned up promptly and correctly.

with open("myfile.txt") as f:
for line in f:
print line,

After the statement is executed, the file f is always closed, even if a problem was encountered while processing the
lines. Other objects which provide predefined clean-up actions will indicate this in their documentation.

8.7. Predefined Clean-up Actions 61

Python Tutorial, Release 2.7.10

62

Chapter 8. Errors and Exceptions

CHAPTER
NINE

CLASSES

Compared with other programming languages, Python’s class mechanism adds classes with a minimum of new syntax
and semantics. It is a mixture of the class mechanisms found in C++ and Modula-3. Python classes provide all the
standard features of Object Oriented Programming: the class inheritance mechanism allows multiple base classes, a
derived class can override any methods of its base class or classes, and a method can call the method of a base class
with the same name. Objects can contain arbitrary amounts and kinds of data. As is true for modules, classes partake
of the dynamic nature of Python: they are created at runtime, and can be modified further after creation.

In C++ terminology, normally class members (including the data members) are public (except see below Private
Variables and Class-local References), and all member functions are virtual. As in Modula-3, there are no shorthands
for referencing the object’s members from its methods: the method function is declared with an explicit first argument
representing the object, which is provided implicitly by the call. As in Smalltalk, classes themselves are objects.
This provides semantics for importing and renaming. Unlike C++ and Modula-3, built-in types can be used as base
classes for extension by the user. Also, like in C++, most built-in operators with special syntax (arithmetic operators,
subscripting etc.) can be redefined for class instances.

(Lacking universally accepted terminology to talk about classes, I will make occasional use of Smalltalk and C++
terms. I would use Modula-3 terms, since its object-oriented semantics are closer to those of Python than C++, but I
expect that few readers have heard of it.)

9.1 A Word About Names and Objects

Objects have individuality, and multiple names (in multiple scopes) can be bound to the same object. This is known
as aliasing in other languages. This is usually not appreciated on a first glance at Python, and can be safely ignored
when dealing with immutable basic types (numbers, strings, tuples). However, aliasing has a possibly surprising effect
on the semantics of Python code involving mutable objects such as lists, dictionaries, and most other types. This is
usually used to the benefit of the program, since aliases behave like pointers in some respects. For example, passing
an object is cheap since only a pointer is passed by the implementation; and if a function modifies an object passed as
an argument, the caller will see the change — this eliminates the need for two different argument passing mechanisms
as in Pascal.

9.2 Python Scopes and Namespaces

Before introducing classes, I first have to tell you something about Python’s scope rules. Class definitions play some
neat tricks with namespaces, and you need to know how scopes and namespaces work to fully understand what’s going
on. Incidentally, knowledge about this subject is useful for any advanced Python programmer.

Let’s begin with some definitions.

A namespace is a mapping from names to objects. Most namespaces are currently implemented as Python dictionaries,
but that’s normally not noticeable in any way (except for performance), and it may change in the future. Examples

63

Python Tutorial, Release 2.7.10

of namespaces are: the set of built-in names (containing functions such as abs (), and built-in exception names); the
global names in a module; and the local names in a function invocation. In a sense the set of attributes of an object
also form a namespace. The important thing to know about namespaces is that there is absolutely no relation between
names in different namespaces; for instance, two different modules may both define a function maximize without
confusion — users of the modules must prefix it with the module name.

By the way, I use the word attribute for any name following a dot — for example, in the expression z . real, real is
an attribute of the object z. Strictly speaking, references to names in modules are attribute references: in the expression
modname . funcname, modname is a module object and funcname is an attribute of it. In this case there happens
to be a straightforward mapping between the module’s attributes and the global names defined in the module: they
share the same namespace! '

Attributes may be read-only or writable. In the latter case, assignment to attributes is possible. Module attributes
are writable: you can write modname .the_answer = 42. Writable attributes may also be deleted with the del
statement. For example, del modname.the_answer will remove the attribute the_answer from the object
named by modname.

Namespaces are created at different moments and have different lifetimes. The namespace containing the built-in
names is created when the Python interpreter starts up, and is never deleted. The global namespace for a module
is created when the module definition is read in; normally, module namespaces also last until the interpreter quits.
The statements executed by the top-level invocation of the interpreter, either read from a script file or interactively,
are considered part of a module called __main__, so they have their own global namespace. (The built-in names
actually also live in a module; this is called __builtin__.)

The local namespace for a function is created when the function is called, and deleted when the function returns or
raises an exception that is not handled within the function. (Actually, forgetting would be a better way to describe
what actually happens.) Of course, recursive invocations each have their own local namespace.

A scope is a textual region of a Python program where a namespace is directly accessible. “Directly accessible” here
means that an unqualified reference to a name attempts to find the name in the namespace.

Although scopes are determined statically, they are used dynamically. At any time during execution, there are at least
three nested scopes whose namespaces are directly accessible:

* the innermost scope, which is searched first, contains the local names

* the scopes of any enclosing functions, which are searched starting with the nearest enclosing scope, contains
non-local, but also non-global names

* the next-to-last scope contains the current module’s global names
* the outermost scope (searched last) is the namespace containing built-in names

If a name is declared global, then all references and assignments go directly to the middle scope containing the
module’s global names. Otherwise, all variables found outside of the innermost scope are read-only (an attempt to
write to such a variable will simply create a new local variable in the innermost scope, leaving the identically named
outer variable unchanged).

Usually, the local scope references the local names of the (textually) current function. Outside functions, the local
scope references the same namespace as the global scope: the module’s namespace. Class definitions place yet another
namespace in the local scope.

It is important to realize that scopes are determined textually: the global scope of a function defined in a module
is that module’s namespace, no matter from where or by what alias the function is called. On the other hand, the
actual search for names is done dynamically, at run time — however, the language definition is evolving towards static
name resolution, at “compile” time, so don’t rely on dynamic name resolution! (In fact, local variables are already
determined statically.)

1 Except for one thing. Module objects have a secret read-only attribute called __dict___ which returns the dictionary used to implement
the module’s namespace; the name __dict___is an attribute but not a global name. Obviously, using this violates the abstraction of namespace
implementation, and should be restricted to things like post-mortem debuggers.

64 Chapter 9. Classes

Python Tutorial, Release 2.7.10

A special quirk of Python is that — if no global statement is in effect — assignments to names always go into the
innermost scope. Assignments do not copy data — they just bind names to objects. The same is true for deletions: the
statement del x removes the binding of x from the namespace referenced by the local scope. In fact, all operations
that introduce new names use the local scope: in particular, import statements and function definitions bind the
module or function name in the local scope. (The global statement can be used to indicate that particular variables
live in the global scope.)

9.3 A First Look at Classes

Classes introduce a little bit of new syntax, three new object types, and some new semantics.

9.3.1 Class Definition Syntax

The simplest form of class definition looks like this:

class ClassName:
<statement-1>

<statement-N>

Class definitions, like function definitions (de f statements) must be executed before they have any effect. (You could
conceivably place a class definition in a branch of an i f statement, or inside a function.)

In practice, the statements inside a class definition will usually be function definitions, but other statements are allowed,
and sometimes useful — we’ll come back to this later. The function definitions inside a class normally have a peculiar
form of argument list, dictated by the calling conventions for methods — again, this is explained later.

When a class definition is entered, a new namespace is created, and used as the local scope — thus, all assignments to
local variables go into this new namespace. In particular, function definitions bind the name of the new function here.

When a class definition is left normally (via the end), a class object is created. This is basically a wrapper around the
contents of the namespace created by the class definition; we’ll learn more about class objects in the next section. The
original local scope (the one in effect just before the class definition was entered) is reinstated, and the class object is
bound here to the class name given in the class definition header (ClassName in the example).

9.3.2 Class Objects

Class objects support two kinds of operations: attribute references and instantiation.

Attribute references use the standard syntax used for all attribute references in Python: obj.name. Valid attribute
names are all the names that were in the class’s namespace when the class object was created. So, if the class definition
looked like this:

class MyClass:
""ra simple example class"""
i = 12345
def f(self):
return 'hello world'

then MyClass.i and MyClass. f are valid attribute references, returning an integer and a function object, respec-
tively. Class attributes can also be assigned to, so you can change the value of MyClass. i by assignment. ___doc___
is also a valid attribute, returning the docstring belonging to the class: "A simple example class".

9.3. A First Look at Classes 65

Python Tutorial, Release 2.7.10

Class instantiation uses function notation. Just pretend that the class object is a parameterless function that returns a
new instance of the class. For example (assuming the above class):

x = MyClass ()
creates a new instance of the class and assigns this object to the local variable x.

The instantiation operation (“calling” a class object) creates an empty object. Many classes like to create objects with
instances customized to a specific initial state. Therefore a class may define a special method named __init__ (),
like this:

def _ init_ (self):
self.data = []

When a class defines an __init__ () method, class instantiation automatically invokes __init__ () for the
newly-created class instance. So in this example, a new, initialized instance can be obtained by:

x = MyClass ()

Of course, the __init__ () method may have arguments for greater flexibility. In that case, arguments given to the
class instantiation operator are passed onto __init__ (). For example,

>>> class Complex:
def _ init__ (self, realpart, imagpart):
self.r = realpart
self.i = imagpart

>>> x = Complex (3.0, —-4.5)
>>> x.r, x.1
(3.0, —-4.5)

9.3.3 Instance Objects

Now what can we do with instance objects? The only operations understood by instance objects are attribute refer-
ences. There are two kinds of valid attribute names, data attributes and methods.

data attributes correspond to “instance variables” in Smalltalk, and to “data members” in C++. Data attributes need
not be declared; like local variables, they spring into existence when they are first assigned to. For example, if x is the
instance of MyClass created above, the following piece of code will print the value 16, without leaving a trace:

x.counter = 1
while x.counter < 10:
X.counter = x.counter * 2

print x.counter
del x.counter

The other kind of instance attribute reference is a method. A method is a function that “belongs to” an object. (In
Python, the term method is not unique to class instances: other object types can have methods as well. For example,
list objects have methods called append, insert, remove, sort, and so on. However, in the following discussion, we’ll
use the term method exclusively to mean methods of class instance objects, unless explicitly stated otherwise.)

Valid method names of an instance object depend on its class. By definition, all attributes of a class that are function
objects define corresponding methods of its instances. So in our example, x . f is a valid method reference, since
MyClass. f is a function, but x . i is not, since MyClass. i is not. But x. £ is not the same thing as MyClass. f
— it is a method object, not a function object.

66 Chapter 9. Classes

Python Tutorial, Release 2.7.10

9.3.4 Method Objects

Usually, a method is called right after it is bound:
x.£()

In the MyClass example, this will return the string “ hello world’. However, it is not necessary to call a method
right away: x. £ is a method object, and can be stored away and called at a later time. For example:

xf = x.f
while True:
print xf ()

will continue to print hello world until the end of time.

What exactly happens when a method is called? You may have noticed that x . £ () was called without an argument
above, even though the function definition for f () specified an argument. What happened to the argument? Surely
Python raises an exception when a function that requires an argument is called without any — even if the argument
isn’t actually used...

Actually, you may have guessed the answer: the special thing about methods is that the object is passed as the first
argument of the function. In our example, the call x. f () is exactly equivalent to MyClass. f (x). In general,
calling a method with a list of n arguments is equivalent to calling the corresponding function with an argument list
that is created by inserting the method’s object before the first argument.

If you still don’t understand how methods work, a look at the implementation can perhaps clarify matters. When an
instance attribute is referenced that isn’t a data attribute, its class is searched. If the name denotes a valid class attribute
that is a function object, a method object is created by packing (pointers to) the instance object and the function object
just found together in an abstract object: this is the method object. When the method object is called with an argument
list, a new argument list is constructed from the instance object and the argument list, and the function object is called
with this new argument list.

9.3.5 Class and Instance Variables

Generally speaking, instance variables are for data unique to each instance and class variables are for attributes and
methods shared by all instances of the class:

class Dog:

kind = 'canine' # class variable shared by all instances
def _ init_ (self, name):
self.name = name # instance variable unique to each instance
>>> d = Dog('Fido"')
>>> e = Dog('Buddy"')
>>> d.kind # shared by all dogs
'canine'
>>> e.kind # shared by all dogs
'canine'
>>> d.name # unique to d
'Fido'
>>> e.name # unique to e
'Buddy'

As discussed in A Word About Names and Objects, shared data can have possibly surprising effects with involving
mutable objects such as lists and dictionaries. For example, the fricks list in the following code should not be used as
a class variable because just a single list would be shared by all Dog instances:

9.3. A First Look at Classes 67

Python Tutorial, Release 2.7.10

class Dog:
tricks = [] # mistaken use of a class variable

def _ init_ (self, name):
self.name = name

def add_trick(self, trick):
self.tricks.append(trick)

>>> d = Dog('Fido")
>>> e = Dog('Buddy"')
>>> d.add_trick('roll over')
>>> e.add_trick ('play dead')

>>> d.tricks # unexpectedly shared by all dogs
['roll over', 'play dead']

Correct design of the class should use an instance variable instead:
class Dog:
def _ init_ (self, name):

self.name = name
self.tricks = [] # creates a new empty list for each dog

def add_trick(self, trick):
self.tricks.append(trick)

>>> d = Dog('Fido")
>>> e = Dog('Buddy"')
>>> d.add_trick('roll over')
>>> e.add_trick ('play dead')

>>> d.tricks
['roll over']
>>> e.tricks
['play dead']

9.4 Random Remarks

Data attributes override method attributes with the same name; to avoid accidental name conflicts, which may cause
hard-to-find bugs in large programs, it is wise to use some kind of convention that minimizes the chance of conflicts.
Possible conventions include capitalizing method names, prefixing data attribute names with a small unique string
(perhaps just an underscore), or using verbs for methods and nouns for data attributes.

Data attributes may be referenced by methods as well as by ordinary users (“clients”) of an object. In other words,
classes are not usable to implement pure abstract data types. In fact, nothing in Python makes it possible to enforce
data hiding — it is all based upon convention. (On the other hand, the Python implementation, written in C, can
completely hide implementation details and control access to an object if necessary; this can be used by extensions to
Python written in C.)

Clients should use data attributes with care — clients may mess up invariants maintained by the methods by stamping
on their data attributes. Note that clients may add data attributes of their own to an instance object without affecting
the validity of the methods, as long as name conflicts are avoided — again, a naming convention can save a lot of
headaches here.

68 Chapter 9. Classes

Python Tutorial, Release 2.7.10

There is no shorthand for referencing data attributes (or other methods!) from within methods. I find that this actually
increases the readability of methods: there is no chance of confusing local variables and instance variables when
glancing through a method.

Often, the first argument of a method is called self. This is nothing more than a convention: the name self has
absolutely no special meaning to Python. Note, however, that by not following the convention your code may be less
readable to other Python programmers, and it is also conceivable that a class browser program might be written that
relies upon such a convention.

Any function object that is a class attribute defines a method for instances of that class. It is not necessary that the
function definition is textually enclosed in the class definition: assigning a function object to a local variable in the
class is also ok. For example:

Function defined outside the class
def fl(self, x, y):
return min (x, x+y)

class C:
f fl
def g(self):
return 'hello world'
h =g

Now f, g and h are all attributes of class C that refer to function objects, and consequently they are all methods of
instances of C — h being exactly equivalent to g. Note that this practice usually only serves to confuse the reader of a
program.

Methods may call other methods by using method attributes of the self argument:

class Bag:

def _ init_ (self):
self.data = []

def add(self, x):
self.data.append(x)

def addtwice (self, x):
self.add(x)
self.add(x)

Methods may reference global names in the same way as ordinary functions. The global scope associated with a
method is the module containing its definition. (A class is never used as a global scope.) While one rarely encounters
a good reason for using global data in a method, there are many legitimate uses of the global scope: for one thing,
functions and modules imported into the global scope can be used by methods, as well as functions and classes defined
in it. Usually, the class containing the method is itself defined in this global scope, and in the next section we’ll find
some good reasons why a method would want to reference its own class.

Each value is an object, and therefore has a class (also called its rype). It is stored as object.___class__.

9.5 Inheritance

Of course, a language feature would not be worthy of the name “class” without supporting inheritance. The syntax for
a derived class definition looks like this:

class DerivedClassName (BaseClassName) :
<statement-1>

9.5. Inheritance 69

Python Tutorial, Release 2.7.10

<statement-N>

The name BaseClassName must be defined in a scope containing the derived class definition. In place of a base
class name, other arbitrary expressions are also allowed. This can be useful, for example, when the base class is
defined in another module:

class DerivedClassName (modname.BaseClassName) :

Execution of a derived class definition proceeds the same as for a base class. When the class object is constructed, the
base class is remembered. This is used for resolving attribute references: if a requested attribute is not found in the
class, the search proceeds to look in the base class. This rule is applied recursively if the base class itself is derived
from some other class.

There’s nothing special about instantiation of derived classes: DerivedClassName () creates a new instance of
the class. Method references are resolved as follows: the corresponding class attribute is searched, descending down
the chain of base classes if necessary, and the method reference is valid if this yields a function object.

Derived classes may override methods of their base classes. Because methods have no special privileges when calling
other methods of the same object, a method of a base class that calls another method defined in the same base class
may end up calling a method of a derived class that overrides it. (For C++ programmers: all methods in Python are
effectively virtual.)

An overriding method in a derived class may in fact want to extend rather than simply replace the base
class method of the same name. There is a simple way to call the base class method directly: just call
BaseClassName.methodname (self, arguments). This is occasionally useful to clients as well. (Note
that this only works if the base class is accessible as BaseClassName in the global scope.)

Python has two built-in functions that work with inheritance:

e Use isinstance () to check an instance’s type: isinstance (obj, int) will be True only if
obj._ _class__is int or some class derived from int.

e Use issubclass () to check class inheritance: issubclass (bool, int) is True since bool is a
subclass of int. However, issubclass (unicode, str) is False since unicode is not a subclass of
str (they only share a common ancestor, basestring).

9.5.1 Multiple Inheritance

Python supports a limited form of multiple inheritance as well. A class definition with multiple base classes looks like
this:

class DerivedClassName (Basel, Base2, Base3):
<statement-1>

<statement-N>

For old-style classes, the only rule is depth-first, left-to-right. Thus, if an attribute is not found in
DerivedClassName, it is searched in Basel, then (recursively) in the base classes of Basel, and only if it
is not found there, it is searched in Base?2, and so on.

(To some people breadth first — searching Base2 and Base3 before the base classes of Basel — looks more
natural. However, this would require you to know whether a particular attribute of Basel is actually defined in
Basel or in one of its base classes before you can figure out the consequences of a name conflict with an attribute of
Base?2. The depth-first rule makes no differences between direct and inherited attributes of Basel.)

70 Chapter 9. Classes

Python Tutorial, Release 2.7.10

For new-style classes, the method resolution order changes dynamically to support cooperative calls to super ().
This approach is known in some other multiple-inheritance languages as call-next-method and is more powerful than
the super call found in single-inheritance languages.

With new-style classes, dynamic ordering is necessary because all cases of multiple inheritance exhibit one or more
diamond relationships (where at least one of the parent classes can be accessed through multiple paths from the
bottommost class). For example, all new-style classes inherit from object, so any case of multiple inheritance
provides more than one path to reach object. To keep the base classes from being accessed more than once, the
dynamic algorithm linearizes the search order in a way that preserves the left-to-right ordering specified in each class,
that calls each parent only once, and that is monotonic (meaning that a class can be subclassed without affecting the
precedence order of its parents). Taken together, these properties make it possible to design reliable and extensible
classes with multiple inheritance. For more detail, see https://www.python.org/download/releases/2.3/mro/.

9.6 Private Variables and Class-local References

“Private” instance variables that cannot be accessed except from inside an object don’t exist in Python. However, there
is a convention that is followed by most Python code: a name prefixed with an underscore (e.g. _spam) should be
treated as a non-public part of the API (whether it is a function, a method or a data member). It should be considered
an implementation detail and subject to change without notice.

Since there is a valid use-case for class-private members (namely to avoid name clashes of names with names
defined by subclasses), there is limited support for such a mechanism, called name mangling. Any identifier of
the form ___spam (at least two leading underscores, at most one trailing underscore) is textually replaced with
_classname__spam, where classname is the current class name with leading underscore(s) stripped. This
mangling is done without regard to the syntactic position of the identifier, as long as it occurs within the definition of
a class.

Name mangling is helpful for letting subclasses override methods without breaking intraclass method calls. For
example:

class Mapping:
def _ init_ (self, iterable):
self.items_list = []
self.__update(iterable)

def update(self, iterable):
for item in iterable:
self.items_list.append(item)

__update = update # private copy of original update () method
class MappingSubclass (Mapping) :

def update (self, keys, values):
provides new signature for update/()
but does not break __init__ ()
for item in zip(keys, values):
self.items_list.append(item)

Note that the mangling rules are designed mostly to avoid accidents; it still is possible to access or modify a variable
that is considered private. This can even be useful in special circumstances, such as in the debugger.

Notice that code passed to exec, eval () orexecfile () does not consider the classname of the invoking class to
be the current class; this is similar to the effect of the global statement, the effect of which is likewise restricted to

9.6. Private Variables and Class-local References 71

https://www.python.org/download/releases/2.3/mro/

Python Tutorial, Release 2.7.10

code that is byte-compiled together. The same restriction applies to getattr (), setattr () anddelattr (), as
well as when referencing ___dict___ directly.

9.7 Odds and Ends

Sometimes it is useful to have a data type similar to the Pascal “record” or C “struct”, bundling together a few named
data items. An empty class definition will do nicely:

class Employee:
pass

john = Employee () # Create an empty employee record

Fill the fields of the record
john.name = 'John Doe'
john.dept = 'computer lab'
john.salary = 1000

A piece of Python code that expects a particular abstract data type can often be passed a class that emulates the
methods of that data type instead. For instance, if you have a function that formats some data from a file object, you
can define a class with methods read () and readline () that get the data from a string buffer instead, and pass it
as an argument.

Instance method objects have attributes, too: m.im_self is the instance object with the method m (), and
m.im_func is the function object corresponding to the method.

9.8 Exceptions Are Classes Too

User-defined exceptions are identified by classes as well. Using this mechanism it is possible to create extensible
hierarchies of exceptions.

There are two new valid (semantic) forms for the raise statement:

raise Class, instance

raise instance

In the first form, instance must be an instance of Class or of a class derived from it. The second form is a
shorthand for:

raise instance._ class_ , instance

A class in an except clause is compatible with an exception if it is the same class or a base class thereof (but not
the other way around — an except clause listing a derived class is not compatible with a base class). For example, the
following code will print B, C, D in that order:

class B:
pass
class C(B):
pass
class D(C):
pass

for ¢ in [B, C, D]:
try:

72 Chapter 9. Classes

Python Tutorial, Release 2.7.10

raise c()
except D:
print "D"
except C:
print "C"
except B:
print "B"

Note that if the except clauses were reversed (with except B first), it would have printed B, B, B — the first matching
except clause is triggered.

When an error message is printed for an unhandled exception, the exception’s class name is printed, then a colon and
a space, and finally the instance converted to a string using the built-in function str ().

9.9 lterators

By now you have probably noticed that most container objects can be looped over using a for statement:

for

for

for

for

for

element in [1, 2, 3]:

print element

element in (1, 2, 3):

print element

key in {'one':1, 'two':2}:
print key

char in "123":

print char

line in open("myfile.txt"):
print line,

This style of access is clear, concise, and convenient. The use of iterators pervades and unifies Python. Behind the
scenes, the for statement calls iter () on the container object. The function returns an iterator object that defines
the method next () which accesses elements in the container one at a time. When there are no more elements,
next () raises a StopIteration exception which tells the for loop to terminate. This example shows how it all

works:

>>> s = 'abc'
>>> it = iter (s)
>>> it

<iterator object at 0xO00A1DB50>

>>>
g

>>>
b

>>>

C
>>>

it.next ()

it .next ()

it.next ()

it.next ()

Traceback (most recent call last):
File "<stdin>", line 1, in ?

it.next ()

Stoplteration

Having seen the mechanics behind the iterator protocol, it is easy to add iterator behavior to your classes. Define
an __iter__ () method which returns an object with a next () method. If the class defines next (), then
__iter__ () canjustreturn self:

9.9. lterators 73

Python Tutorial, Release 2.7.10

class Reverse:

"""Tterator for looping over a sequence backwards.

def _ init__ (self, data):
self.data = data
self.index = len (data)

def @ iter_ (self):
return self

def next (self):
if self.index == 0:

raise Stoplteration

self.index = self.index - 1
return self.data[self.index]

mmn

>>> rev = Reverse('spam')
>>> iter (rev)
<__main__.Reverse object at 0x00A1DB50>
>>> for char in rev:
print char

n o e 3 -

9.10 Generators

Generators are a simple and powerful tool for creating iterators. They are written like regular functions but use the
yield statement whenever they want to return data. Each time next () is called on it, the generator resumes where
it left off (it remembers all the data values and which statement was last executed). An example shows that generators
can be trivially easy to create:

def reverse(data) :
for index in range(len(data)-1, -1, -1):
yield data[index]

>>> for char in reverse('golf'):
print char

Q O ' tHhoe

Anything that can be done with generators can also be done with class-based iterators as described in the previous
section. What makes generators so compactis thatthe __iter__ () and next () methods are created automatically.

Another key feature is that the local variables and execution state are automatically saved between calls. This made
the function easier to write and much more clear than an approach using instance variables like self.index and
self.data

In addition to automatic method creation and saving program state, when generators terminate, they automatically
raise StopIteration. In combination, these features make it easy to create iterators with no more effort than
writing a regular function.

74 Chapter 9. Classes

Python Tutorial, Release 2.7.10

9.11 Generator Expressions

Some simple generators can be coded succinctly as expressions using a syntax similar to list comprehensions but with
parentheses instead of brackets. These expressions are designed for situations where the generator is used right away
by an enclosing function. Generator expressions are more compact but less versatile than full generator definitions and
tend to be more memory friendly than equivalent list comprehensions.

Examples:

>>> sum(ixi for i1 in range(10)) # sum of squares
285

>>> xvec = [10, 20, 30]

>>> yvec = [7, 5, 3]

>>> sum(xxy for x,y in zip(xvec, yvec)) # dot product
260

>>> from math import pi, sin

>>> sine_table = dict ((x, sin(x*pi/180)) for x in range (0, 91))

>>> unique_words = set (word for line in page for word in line.split())

>>> valedictorian = max ((student.gpa, student.name) for student in graduates)
>>> data = 'golf'

>>> list(data[i] for i in range(len(data)-1,-1,-1))
[lfl, VlV, 'O', |g¥1

9.11. Generator Expressions 75

Python Tutorial, Release 2.7.10

76

Chapter 9. Classes

CHAPTER
TEN

BRIEF TOUR OF THE STANDARD LIBRARY

10.1 Operating System Interface

The os module provides dozens of functions for interacting with the operating system:

>>> import os

>>> os.getcwd () # Return the current working directory

'C:\\Python26"

>>> os.chdir('/server/accesslogs"') # Change current working directory
>>> os.system('mkdir today') # Run the command mkdir in the system shell
0

Be sure to use the import os styleinstead of from os import «. Thiswillkeep os.open () from shadowing
the built-in open () function which operates much differently.

The built-in dir () and help () functions are useful as interactive aids for working with large modules like os:

>>> import os

>>> dir (os)

<returns a list of all module functions>

>>> help (os)

<returns an extensive manual page created from the module's docstrings>

For daily file and directory management tasks, the shut il module provides a higher level interface that is easier to
use:

>>> import shutil
>>> shutil.copyfile('data.db', 'archive.db')
>>> shutil.move ('/build/executables', 'installdir')

10.2 File Wildcards

The g1 ob module provides a function for making file lists from directory wildcard searches:

>>> import glob
>>> glob.glob('x.py")
['"primes.py', 'random.py', 'quote.py']

77

Python Tutorial, Release 2.7.10

10.3 Command Line Arguments

Common utility scripts often need to process command line arguments. These arguments are stored in the sys
module’s argv attribute as a list. For instance the following output results from running python demo.py one
two three at the command line:

>>> import sys
>>> print sys.argv
['demo.py', 'one', 'two', 'three']

The getopt module processes sys.argv using the conventions of the Unix getopt () function. More powerful and
flexible command line processing is provided by the argparse module.

10.4 Error Output Redirection and Program Termination

The sys module also has attributes for stdin, stdout, and stderr. The latter is useful for emitting warnings and error
messages to make them visible even when stdout has been redirected:

>>> gys.stderr.write('Warning, log file not found starting a new one\n')
Warning, log file not found starting a new one

The most direct way to terminate a script is to use sys.exit ().

10.5 String Pattern Matching

The re module provides regular expression tools for advanced string processing. For complex matching and manipu-
lation, regular expressions offer succinct, optimized solutions:

>>> import re

>>> re.findall (r'\bfla-z]*', 'which foot or hand fell fastest')
["foot!', 'fell', 'fastest']

>>> re.sub(r' (\b[a-z]+) \1', r'\1l', 'cat in the the hat')

'cat in the hat'

When only simple capabilities are needed, string methods are preferred because they are easier to read and debug:

>>> 'tea for too'.replace('too', 'two')
'tea for two'

10.6 Mathematics

The math module gives access to the underlying C library functions for floating point math:

>>> import math

>>> math.cos (math.pi / 4.0)
0.70710678118654757

>>> math.log (1024, 2)

10.0

The random module provides tools for making random selections:

78 Chapter 10. Brief Tour of the Standard Library

Python Tutorial, Release 2.7.10

>>> import random

>>> random.choice (['apple', 'pear', 'banana'l)

'apple'

>>> random.sample (xrange (100), 10) # sampling without replacement
[30, 83, 16, 4, 8, 81, 41, 50, 18, 33]

>>> random.random () # random float

0.17970987693706186

>>> random.randrange (6) # random integer chosen from range (6)

4

10.7 Internet Access

There are a number of modules for accessing the internet and processing internet protocols. Two of the simplest are
urllib? for retrieving data from URLs and smtplib for sending mail:

>>> import urllib2
>>> for line in urllib2.urlopen('http://tycho.usno.navy.mil/cgi-bin/timer.pl"):
if 'EST' in line or 'EDT' in line: # look for Eastern Time
print line

Nov. 25, 09:43:32 PM EST

>>> import smtplib

>>> server = smtplib.SMTP ('localhost')

>>> server.sendmail ('soothsayer@example.org', 'jcaesar@example.org',
"""To: jcaesar@example.org
From: soothsayer(@example.org

Beware the Ides of March.

mnn ")

>>> server.quit ()

(Note that the second example needs a mailserver running on localhost.)

10.8 Dates and Times

The datet ime module supplies classes for manipulating dates and times in both simple and complex ways. While
date and time arithmetic is supported, the focus of the implementation is on efficient member extraction for output
formatting and manipulation. The module also supports objects that are timezone aware.

>>> # dates are easily constructed and formatted
>>> from datetime import date
>>> now = date.today ()

>>> now
datetime.date (2003, 12, 2)
>>> now.strftime ("Sm-2%d-%y. %d %$b %Y is a %A on the 2d day of %B.")

'12-02-03. 02 Dec 2003 is a Tuesday on the 02 day of December.'

>>> # dates support calendar arithmetic
>>> birthday = date (1964, 7, 31)
>>> age = now - birthday

10.7. Internet Access 79

Python Tutorial, Release 2.7.10

>>> age.days
14368

10.9 Data Compression

Common data archiving and compression formats are directly supported by modules including: z1ib, gzip, bz2,
zipfileand tarfile.

>>> import zlib

>>> s = 'witch which has which witches wrist watch'
>>> len(s)

41

>>> t = zlib.compress(s)

>>> len(t)

37

>>> zlib.decompress (t)

'witch which has which witches wrist watch'
>>> zlib.crc32(s)

226805979

10.10 Performance Measurement

Some Python users develop a deep interest in knowing the relative performance of different approaches to the same
problem. Python provides a measurement tool that answers those questions immediately.

For example, it may be tempting to use the tuple packing and unpacking feature instead of the traditional approach to
swapping arguments. The t ime it module quickly demonstrates a modest performance advantage:

>>> from timeit import Timer

>>> Timer ('t=a; a=b; b=t', 'a=1l; b=2") .timeit ()
0.57535828626024577
>>> Timer ('a,b = b,a', 'a=1l; b=2").timeit ()

0.54962537085770791

In contrast to timeit ‘s fine level of granularity, the profile and pstats modules provide tools for identifying
time critical sections in larger blocks of code.

10.11 Quality Control

One approach for developing high quality software is to write tests for each function as it is developed and to run those
tests frequently during the development process.

The doctest module provides a tool for scanning a module and validating tests embedded in a program’s docstrings.
Test construction is as simple as cutting-and-pasting a typical call along with its results into the docstring. This
improves the documentation by providing the user with an example and it allows the doctest module to make sure the
code remains true to the documentation:

def average (values) :

"""Computes the arithmetic mean of a list of numbers.

>>> print average ([20, 30, 70])
40.0

80 Chapter 10. Brief Tour of the Standard Library

Python Tutorial, Release 2.7.10

mmn

return sum(values, 0.0) / len(values)

import doctest
doctest.testmod () # automatically validate the embedded tests

The unittest module is not as effortless as the doctest module, but it allows a more comprehensive set of tests
to be maintained in a separate file:

import unittest
class TestStatisticalFunctions (unittest.TestCase) :

def test_average(self):
self.assertkEqual (average ([20, 30, 70]), 40.0)
self.assertEqual (round(average([1l, 5, 71), 1), 4.3)
with self.assertRaises (ZeroDivisionError) :
average ([])
with self.assertRaises (TypeError) :
average (20, 30, 70)

unittest.main() # Calling from the command line invokes all tests

10.12 Batteries Included

Python has a “batteries included” philosophy. This is best seen through the sophisticated and robust capabilities of its
larger packages. For example:

e The xmlrpclib and SimpleXMLRPCServer modules make implementing remote procedure calls into an
almost trivial task. Despite the modules names, no direct knowledge or handling of XML is needed.

e The email package is a library for managing email messages, including MIME and other RFC 2822-based
message documents. Unlike smtplib and poplib which actually send and receive messages, the email
package has a complete toolset for building or decoding complex message structures (including attachments)
and for implementing internet encoding and header protocols.

e The xml.domand xml . sax packages provide robust support for parsing this popular data interchange format.
Likewise, the csv module supports direct reads and writes in a common database format. Together, these
modules and packages greatly simplify data interchange between Python applications and other tools.

* Internationalization is supported by a number of modules including gettext, locale, and the codecs
package.

10.12. Batteries Included 81

Python Tutorial, Release 2.7.10

82

Chapter 10. Brief Tour of the Standard Library

CHAPTER
ELEVEN

BRIEF TOUR OF THE STANDARD LIBRARY - PART Il

This second tour covers more advanced modules that support professional programming needs. These modules rarely
occur in small scripts.

11.1 Output Formatting

The repr module provides a version of repr () customized for abbreviated displays of large or deeply nested
containers:

>>> import repr
>>> repr.repr(set ('supercalifragilisticexpialidocious'))
"Set(['a', 'C', ‘dV, lel, 'fV, lgl, ...])"

The pprint module offers more sophisticated control over printing both built-in and user defined objects in a way
that is readable by the interpreter. When the result is longer than one line, the “pretty printer” adds line breaks and
indentation to more clearly reveal data structure:

>>> import pprint
>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',
'vellow'], 'blue'l]l]l]

>>> pprint.pprint (t, width=30)
[([[['black', 'cyan'],

'white',

['green', 'red']],
[['magenta', 'yellow'],
'blue']]]

The textwrap module formats paragraphs of text to fit a given screen width:

>>> import textwrap

>>> doc = """The wrap() method is just like fill() except that it returns
a list of strings instead of one big string with newlines to separate
the wrapped lines."""

>>> print textwrap.fill (doc, width=40)
The wrap () method is Jjust like fill()
except that it returns a list of strings
instead of one big string with newlines
to separate the wrapped lines.

The 1ocale module accesses a database of culture specific data formats. The grouping attribute of locale’s format
function provides a direct way of formatting numbers with group separators:

83

Python Tutorial, Release 2.7.10

>>> import locale
>>> locale.setlocale(locale.LC_ALL, 'English_United States.1252")
'English_United States.1252'

>>> conv = locale.localeconv () # get a mapping of conventions
>>> x = 1234567.8

>>> locale.format ("%d", x, grouping=True)

'1,234,567"

>>> locale.format_string("¢s%.+f", (conv['currency_symbol'],

ce conv|['frac digits'], x), grouping=True)
'$1,234,567.80"

11.2 Templating

The st ring module includes a versatile Template class with a simplified syntax suitable for editing by end-users.
This allows users to customize their applications without having to alter the application.

The format uses placeholder names formed by $ with valid Python identifiers (alphanumeric characters and under-
scores). Surrounding the placeholder with braces allows it to be followed by more alphanumeric letters with no
intervening spaces. Writing $$ creates a single escaped $:

>>> from string import Template

>>> t = Template('${village}folk send $$10 to Scause.')

>>> t.substitute(village='Nottingham', cause='the ditch fund'")
'Nottinghamfolk send $10 to the ditch fund.'

The substitute () method raises a KeyError when a placeholder is not supplied in a dictionary or a keyword
argument. For mail-merge style applications, user supplied data may be incomplete and the safe_substitute ()
method may be more appropriate — it will leave placeholders unchanged if data is missing:

>>> t = Template('Return the S$item to $Sowner.')
>>> d dict (item='unladen swallow')

>>> t.substitute (d)

Traceback (most recent call last):

KeyError: 'owner'
>>> t.safe_substitute (d)
'Return the unladen swallow to $owner.'

Template subclasses can specify a custom delimiter. For example, a batch renaming utility for a photo browser may
elect to use percent signs for placeholders such as the current date, image sequence number, or file format:

>>> import time, os.path
>>> photofiles = ['img_1074.jpg', 'img_1076.7Jpg', 'img_1077.7Jpg']
>>> class BatchRename (Template) :
delimiter = '%'
>>> fmt = raw_input ('Enter rename style (%d-date %n-seqnum 2¢f-format) : ")
Enter rename style (%d-date %$n-seqnum $f-format): Ashley_%n%f

>>> t = BatchRename (fmt)

>>> date = time.strftime (' 3d%b%sy")

>>> for i, filename in enumerate (photofiles):
base, ext = os.path.splitext (filename)
newname = t.substitute (d=date, n=i, f=ext)
print '{0} —-—> {1}'.format (filename, newname)

84 Chapter 11. Brief Tour of the Standard Library — Part I

Python Tutorial, Release 2.7.10

img_1074.jpg ——> Ashley_0.jpg
img_1076.jpg ——> Ashley_1.Jpg
img_1077.jpg ——-> Ashley_2.]Jpg

Another application for templating is separating program logic from the details of multiple output formats. This makes
it possible to substitute custom templates for XML files, plain text reports, and HTML web reports.

11.3 Working with Binary Data Record Layouts

The st ruct module provides pack () and unpack () functions for working with variable length binary record for-
mats. The following example shows how to loop through header information in a ZIP file without using the zipfile
module. Pack codes "H" and "I" represent two and four byte unsigned numbers respectively. The " <" indicates that
they are standard size and in little-endian byte order:

import struct

data = open('myfile.zip', 'rb').read()

start = 0

for i in range(3): # show the first 3 file headers
start += 14
fields = struct.unpack ('<ITIIHH', data[start:start+16])
crc32, comp_size, uncomp_size, filenamesize, extra_size = fields

start += 16

filename = data[start:start+filenamesize]

start += filenamesize

extra = data[start:startt+extra_size]

print filename, hex(crc32), comp_size, uncomp_size

start += extra_size + comp_size # skip to the next header

11.4 Multi-threading

Threading is a technique for decoupling tasks which are not sequentially dependent. Threads can be used to improve
the responsiveness of applications that accept user input while other tasks run in the background. A related use case is
running I/O in parallel with computations in another thread.

The following code shows how the high level threading module can run tasks in background while the main
program continues to run:

import threading, zipfile

class AsyncZip (threading.Thread) :

def _ init_ (self, infile, outfile):
threading.Thread.__init__ (self)
self.infile = infile

self.outfile = outfile
def run (self):
f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
f.write(self.infile)
f.close()
print 'Finished background zip of: ', self.infile

11.3. Working with Binary Data Record Layouts 85

Python Tutorial, Release 2.7.10

background = AsyncZip('mydata.txt', 'myarchive.zip')
background.start ()
print 'The main program continues to run in foreground.'

background. join () # Wait for the background task to finish
print 'Main program waited until background was done.'

The principal challenge of multi-threaded applications is coordinating threads that share data or other resources. To
that end, the threading module provides a number of synchronization primitives including locks, events, condition
variables, and semaphores.

While those tools are powerful, minor design errors can result in problems that are difficult to reproduce. So, the
preferred approach to task coordination is to concentrate all access to a resource in a single thread and then use the
Queue module to feed that thread with requests from other threads. Applications using Queue . Queue objects for
inter-thread communication and coordination are easier to design, more readable, and more reliable.

11.5 Logging

The 1ogging module offers a full featured and flexible logging system. At its simplest, log messages are sent to a
fileorto sys.stderr:

import logging

logging.debug ('Debugging information')

logging.info('Informational message')

logging.warning ('Warning:config file not found', 'server.conf')
logging.error ('Error occurred')

logging.critical ('Critical error —-- shutting down')

This produces the following output:

WARNING:root:Warning:config file server.conf not found
ERROR:root:Error occurred
CRITICAL:root:Critical error —-- shutting down

By default, informational and debugging messages are suppressed and the output is sent to standard error. Other
output options include routing messages through email, datagrams, sockets, or to an HTTP Server. New filters can
select different routing based on message priority: DEBUG, INFO, WARNING, ERROR, and CRITICAL.

The logging system can be configured directly from Python or can be loaded from a user editable configuration file for
customized logging without altering the application.

11.6 Weak References

Python does automatic memory management (reference counting for most objects and garbage collection to eliminate
cycles). The memory is freed shortly after the last reference to it has been eliminated.

This approach works fine for most applications but occasionally there is a need to track objects only as long as they
are being used by something else. Unfortunately, just tracking them creates a reference that makes them permanent.
The weakref module provides tools for tracking objects without creating a reference. When the object is no longer
needed, it is automatically removed from a weakref table and a callback is triggered for weakref objects. Typical
applications include caching objects that are expensive to create:

>>> import weakref, gc
>>> class A:
def init (self, wvalue):

86 Chapter 11. Brief Tour of the Standard Library — Part I

Python Tutorial, Release 2.7.10

self.value = value
def _ repr__ (self):
return str(self.value)

>>> a = A(10) # create a reference

>>> d = weakref.WeakValueDictionary ()

>>> d['primary'] = a # does not create a reference

>>> d['primary'] # fetch the object if it is still alive
10

>>> del a # remove the one reference

>>> gc.collect () # run garbage collection right away

0

>>> d['primary'] # entry was automatically removed

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
d['primary"'] # entry was automatically removed
File "C:/python26/1lib/weakref.py", line 46, in _ getitem_
o = self.datalkey] ()
KeyError: 'primary'

11.7 Tools for Working with Lists

Many data structure needs can be met with the built-in list type. However, sometimes there is a need for alternative
implementations with different performance trade-offs.

The array module provides an array () object that is like a list that stores only homogeneous data and stores it
more compactly. The following example shows an array of numbers stored as two byte unsigned binary numbers
(typecode "H") rather than the usual 16 bytes per entry for regular lists of Python int objects:

>>> from array import array

>>> a = array('H', [4000, 10, 700, 222221])
>>> sum(a)

26932

>>> a[l:3]

array ('H', [10, 7001])

The collections module provides a deque () object that is like a list with faster appends and pops from the left
side but slower lookups in the middle. These objects are well suited for implementing queues and breadth first tree
searches:

>>> from collections import deque

>>> d = deque(["taskl", "task2", "task3"])
>>> d.append ("task4d")

>>> print "Handling", d.popleft ()

Handling taskl

unsearched = deque ([starting_node])
def breadth_first_search (unsearched):
node = unsearched.popleft ()
for m in gen_moves (node) :
if is_goal (m) :
return m
unsearched. append (m)

11.7. Tools for Working with Lists 87

Python Tutorial, Release 2.7.10

In addition to alternative list implementations, the library also offers other tools such as the bisect module with
functions for manipulating sorted lists:

>>> import bisect

>>> gcores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python'")]
>>> bisect.insort (scores, (300, 'ruby'))

>>> scores

[(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]

The heapg module provides functions for implementing heaps based on regular lists. The lowest valued entry is
always kept at position zero. This is useful for applications which repeatedly access the smallest element but do not
want to run a full list sort:

>>> from heapqg import heapify, heappop, heappush

>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]

>>> heapify (data) # rearrange the list into heap order
>>> heappush (data, -5) # add a new entry

>>> [heappop (data) for i in range (3)] # fetch the three smallest entries
[-5, 0, 1]

11.8 Decimal Floating Point Arithmetic

The decimal module offers a Decimal datatype for decimal floating point arithmetic. Compared to the built-in
float implementation of binary floating point, the class is especially helpful for

* financial applications and other uses which require exact decimal representation,

* control over precision,

* control over rounding to meet legal or regulatory requirements,

* tracking of significant decimal places, or

* applications where the user expects the results to match calculations done by hand.

For example, calculating a 5% tax on a 70 cent phone charge gives different results in decimal floating point and binary
floating point. The difference becomes significant if the results are rounded to the nearest cent:

>>> from decimal import =~

>>> x = Decimal ('0.70') % Decimal('1.05")

>>> x

Decimal ('0.7350")

>>> x.quantize (Decimal ('0.01")) # round to nearest cent
Decimal ('0.74")

>>> round (.70 « 1.05, 2) # same calculation with floats
0.73

The Decimal result keeps a trailing zero, automatically inferring four place significance from multiplicands with two
place significance. Decimal reproduces mathematics as done by hand and avoids issues that can arise when binary
floating point cannot exactly represent decimal quantities.

Exact representation enables the Decimal class to perform modulo calculations and equality tests that are unsuitable
for binary floating point:

>>> Decimal ('1.00"'") % Decimal('.10")
Decimal ('0.00")

>> 1.00 % 0.10

0.09999999999999995

88 Chapter 11. Brief Tour of the Standard Library — Part I

Python Tutorial, Release 2.7.10

>>> sum([Decimal ('0.1'")]1+10) == Decimal('1.0")
True

>>> sum([0.1]%10) == 1.0

False

The decimal module provides arithmetic with as much precision as needed:

>>> getcontext () .prec = 36
>>> Decimal (1) / Decimal (7)
Decimal ('0.142857142857142857142857142857142857")

11.8. Decimal Floating Point Arithmetic

89

Python Tutorial, Release 2.7.10

90

Chapter 11. Brief Tour of the Standard Library — Part I

CHAPTER
TWELVE

WHAT NOW?

Reading this tutorial has probably reinforced your interest in using Python — you should be eager to apply Python to
solving your real-world problems. Where should you go to learn more?

This tutorial is part of Python’s documentation set. Some other documents in the set are:

library-index:

You should browse through this manual, which gives complete (though terse) reference material about types,
functions, and the modules in the standard library. The standard Python distribution includes a /ot of additional
code. There are modules to read Unix mailboxes, retrieve documents via HTTP, generate random numbers,
parse command-line options, write CGI programs, compress data, and many other tasks. Skimming through the
Library Reference will give you an idea of what’s available.

install-index explains how to install external modules written by other Python users.

reference-index: A detailed explanation of Python’s syntax and semantics. It’s heavy reading, but is useful as a
complete guide to the language itself.

More Python resources:

https://www.python.org: The major Python Web site. It contains code, documentation, and pointers to Python-
related pages around the Web. This Web site is mirrored in various places around the world, such as Europe,
Japan, and Australia; a mirror may be faster than the main site, depending on your geographical location.

https://docs.python.org: Fast access to Python’s documentation.

https://pypi.python.org/pypi: The Python Package Index, previously also nicknamed the Cheese Shop, is an
index of user-created Python modules that are available for download. Once you begin releasing code, you can
register it here so that others can find it.

http://code.activestate.com/recipes/langs/python/: The Python Cookbook is a sizable collection of code exam-
ples, larger modules, and useful scripts. Particularly notable contributions are collected in a book also titled
Python Cookbook (O’Reilly & Associates, ISBN 0-596-00797-3.)

For Python-related questions and problem reports, you can post to the newsgroup comp. lang.python, or send
them to the mailing list at python-list@python.org. The newsgroup and mailing list are gatewayed, so messages posted
to one will automatically be forwarded to the other. There are around 120 postings a day (with peaks up to several
hundred), asking (and answering) questions, suggesting new features, and announcing new modules. Before posting,
be sure to check the list of Frequently Asked Questions (also called the FAQ). Mailing list archives are available at
https://mail.python.org/pipermail/. The FAQ answers many of the questions that come up again and again, and may
already contain the solution for your problem.

91

https://www.python.org
https://docs.python.org
https://pypi.python.org/pypi
http://code.activestate.com/recipes/langs/python/
mailto:python-list@python.org
https://mail.python.org/pipermail/

Python Tutorial, Release 2.7.10

92

Chapter 12. What Now?

CHAPTER
THIRTEEN

INTERACTIVE INPUT EDITING AND HISTORY SUBSTITUTION

Some versions of the Python interpreter support editing of the current input line and history substitution, similar to
facilities found in the Korn shell and the GNU Bash shell. This is implemented using the GNU Readline library,
which supports Emacs-style and vi-style editing. This library has its own documentation which I won’t duplicate here;
however, the basics are easily explained. The interactive editing and history described here are optionally available in
the Unix and Cygwin versions of the interpreter.

This chapter does not document the editing facilities of Mark Hammond’s PythonWin package or the Tk-based envi-
ronment, IDLE, distributed with Python. The command line history recall which operates within DOS boxes on NT
and some other DOS and Windows flavors is yet another beast.

13.1 Line Editing

If supported, input line editing is active whenever the interpreter prints a primary or secondary prompt. The current
line can be edited using the conventional Emacs control characters. The most important of these are: C—A (Control-A)
moves the cursor to the beginning of the line, C-E to the end, C—B moves it one position to the left, C-F to the right.
Backspace erases the character to the left of the cursor, C-D the character to its right. C—X kills (erases) the rest of
the line to the right of the cursor, C-Y yanks back the last killed string. C-underscore undoes the last change you
made; it can be repeated for cumulative effect.

13.2 History Substitution

History substitution works as follows. All non-empty input lines issued are saved in a history buffer, and when a new
prompt is given you are positioned on a new line at the bottom of this buffer. C—P moves one line up (back) in the
history buffer, C—N moves one down. Any line in the history buffer can be edited; an asterisk appears in front of the
prompt to mark a line as modified. Pressing the Return key passes the current line to the interpreter. C—R starts an
incremental reverse search; C—S starts a forward search.

13.3 Key Bindings

The key bindings and some other parameters of the Readline library can be customized by placing commands in an
initialization file called ~/ . input rc. Key bindings have the form

key-name: function-name
or

"string": function-name

93

http://tiswww.case.edu/php/chet/readline/rltop.html

Python Tutorial, Release 2.7.10

and options can be set with
set option-name value
For example:

I prefer vi-style editing:
set editing-mode vi

Edit using a single line:
set horizontal-scroll-mode On

Rebind some keys:

Meta-h: backward-kill-word
"\C-u": universal-argument
"\C-x\C-r": re-read-init-file

Note that the default binding for Tab in Python is to insert a Tab character instead of Readline’s default filename
completion function. If you insist, you can override this by putting

Tab: complete

in your ~/ . inputrc. (Of course, this makes it harder to type indented continuation lines if you’re accustomed to
using Tab for that purpose.)

Automatic completion of variable and module names is optionally available. To enable it in the interpreter’s interactive
mode, add the following to your startup file: !

import rlcompleter, readline
readline.parse_and_bind('tab: complete')

This binds the Tab key to the completion function, so hitting the Tab key twice suggests completions; it looks at
Python statement names, the current local variables, and the available module names. For dotted expressions such as
string. a, it will evaluate the expression up to the final 7 .’ and then suggest completions from the attributes of the
resulting object. Note that this may execute application-defined code if an object witha ___getattr__ () methodis
part of the expression.

A more capable startup file might look like this example. Note that this deletes the names it creates once they are no
longer needed; this is done since the startup file is executed in the same namespace as the interactive commands, and
removing the names avoids creating side effects in the interactive environment. You may find it convenient to keep
some of the imported modules, such as os, which turn out to be needed in most sessions with the interpreter.

Add auto-completion and a stored history file of commands to your Python
interactive interpreter. Requires Python 2.0+, readline. Autocomplete is
bound to the Esc key by default (you can change it - see readline docs).

Store the file in ~/.pystartup, and set an environment variable to point
to it: "export PYTHONSTARTUP=~/.pystartup" in bash.

R R S

import atexit
import os

import readline
import rlcompleter

historyPath = os.path.expanduser ("~/.pyhistory")

def save_history (historyPath=historyPath) :

! Python will execute the contents of a file identified by the PYTHONSTARTUP environment variable when you start an interactive interpreter.
To customize Python even for non-interactive mode, see The Customization Modules.

94 Chapter 13. Interactive Input Editing and History Substitution

Python Tutorial, Release 2.7.10

import readline
readline.write_history_ file(historyPath)

if os.path.exists (historyPath):
readline.read_history_file (historyPath)

atexit.register (save_history)
del os, atexit, readline, rlcompleter, save_history, historyPath

13.4 Alternatives to the Interactive Interpreter

This facility is an enormous step forward compared to earlier versions of the interpreter; however, some wishes are
left: It would be nice if the proper indentation were suggested on continuation lines (the parser knows if an indent
token is required next). The completion mechanism might use the interpreter’s symbol table. A command to check (or
even suggest) matching parentheses, quotes, etc., would also be useful.

One alternative enhanced interactive interpreter that has been around for quite some time is [Python, which features
tab completion, object exploration and advanced history management. It can also be thoroughly customized and
embedded into other applications. Another similar enhanced interactive environment is bpython.

13.4. Alternatives to the Interactive Interpreter 95

http://ipython.scipy.org/
http://www.bpython-interpreter.org/

Python Tutorial, Release 2.7.10

96

Chapter 13. Interactive Input Editing and History Substitution

CHAPTER
FOURTEEN

FLOATING POINT ARITHMETIC: ISSUES AND LIMITATIONS

Floating-point numbers are represented in computer hardware as base 2 (binary) fractions. For example, the decimal
fraction

0.125
has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction
0.001

has value 0/2 + 0/4 + 1/8. These two fractions have identical values, the only real difference being that the first is
written in base 10 fractional notation, and the second in base 2.

Unfortunately, most decimal fractions cannot be represented exactly as binary fractions. A consequence is that, in
general, the decimal floating-point numbers you enter are only approximated by the binary floating-point numbers
actually stored in the machine.

The problem is easier to understand at first in base 10. Consider the fraction 1/3. You can approximate that as a base
10 fraction:

0.3

or, better,
0.33

or, better,
0.333

and so on. No matter how many digits you’re willing to write down, the result will never be exactly 1/3, but will be an
increasingly better approximation of 1/3.

In the same way, no matter how many base 2 digits you’re willing to use, the decimal value 0.1 cannot be represented
exactly as a base 2 fraction. In base 2, 1/10 is the infinitely repeating fraction

0.0001100110011001100110011001100110011001100110011...
Stop at any finite number of bits, and you get an approximation.

On a typical machine running Python, there are 53 bits of precision available for a Python float, so the value stored
internally when you enter the decimal number O . 1 is the binary fraction

0.00011001100110011001100110011001100110011001100110011010
which is close to, but not exactly equal to, 1/10.

It’s easy to forget that the stored value is an approximation to the original decimal fraction, because of the way that
floats are displayed at the interpreter prompt. Python only prints a decimal approximation to the true decimal value
of the binary approximation stored by the machine. If Python were to print the true decimal value of the binary
approximation stored for 0.1, it would have to display

97

Python Tutorial, Release 2.7.10

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625

That is more digits than most people find useful, so Python keeps the number of digits manageable by displaying a
rounded value instead

>>> 0.1
0.1

It’s important to realize that this is, in a real sense, an illusion: the value in the machine is not exactly 1/10, you’re
simply rounding the display of the true machine value. This fact becomes apparent as soon as you try to do arithmetic
with these values

>> 0.1 + 0.2
0.30000000000000004

Note that this is in the very nature of binary floating-point: this is not a bug in Python, and it is not a bug in your
code either. You’ll see the same kind of thing in all languages that support your hardware’s floating-point arithmetic
(although some languages may not display the difference by default, or in all output modes).

Other surprises follow from this one. For example, if you try to round the value 2.675 to two decimal places, you get
this

>>> round(2.675, 2)
2.67

The documentation for the built-in round () function says that it rounds to the nearest value, rounding ties away
from zero. Since the decimal fraction 2.675 is exactly halfway between 2.67 and 2.68, you might expect the result
here to be (a binary approximation to) 2.68. It’s not, because when the decimal string 2. 675 is converted to a binary
floating-point number, it’s again replaced with a binary approximation, whose exact value is

2.67499999999999982236431605997495353221893310546875
Since this approximation is slightly closer to 2.67 than to 2.68, it’s rounded down.

If you’re in a situation where you care which way your decimal halfway-cases are rounded, you should consider using
the decimal module. Incidentally, the decimal module also provides a nice way to “see” the exact value that’s
stored in any particular Python float

>>> from decimal import Decimal
>>> Decimal (2.675)
Decimal ('2.67499999999999982236431605997495353221893310546875")

Another consequence is that since 0.1 is not exactly 1/10, summing ten values of 0.1 may not yield exactly 1.0, either:

>>> sum = 0.0
>>> for i in range(10):
sum += 0.1
>>> sum
0.9999999999999999
Binary floating-point arithmetic holds many surprises like this. The problem with “0.1” is explained in precise detail

below, in the “Representation Error” section. See The Perils of Floating Point for a more complete account of other
common surprises.

As that says near the end, “there are no easy answers.” Still, don’t be unduly wary of floating-point! The errors in
Python float operations are inherited from the floating-point hardware, and on most machines are on the order of no
more than 1 part in 2**53 per operation. That’s more than adequate for most tasks, but you do need to keep in mind
that it’s not decimal arithmetic, and that every float operation can suffer a new rounding error.

98 Chapter 14. Floating Point Arithmetic: Issues and Limitations

http://www.lahey.com/float.htm

Python Tutorial, Release 2.7.10

While pathological cases do exist, for most casual use of floating-point arithmetic you’ll see the result you expect in
the end if you simply round the display of your final results to the number of decimal digits you expect. For fine
control over how a float is displayed see the st r. format () method’s format specifiers in formatstrings.

14.1 Representation Error

This section explains the “0.1” example in detail, and shows how you can perform an exact analysis of cases like this
yourself. Basic familiarity with binary floating-point representation is assumed.

Representation error refers to the fact that some (most, actually) decimal fractions cannot be represented exactly as
binary (base 2) fractions. This is the chief reason why Python (or Perl, C, C++, Java, Fortran, and many others) often
won’t display the exact decimal number you expect:

>> 0.1 + 0.2
0.30000000000000004

Why is that? 1/10 and 2/10 are not exactly representable as a binary fraction. Almost all machines today (July 2010)
use IEEE-754 floating point arithmetic, and almost all platforms map Python floats to IEEE-754 “double precision”.
754 doubles contain 53 bits of precision, so on input the computer strives to convert 0.1 to the closest fraction it can
of the form J/2**N where J is an integer containing exactly 53 bits. Rewriting

1/ 10 ~= J / (2%«N)
as
J ~= 2%*N / 10

and recalling that J has exactly 53 bits (is >= 2x %52 but < 2% x53), the best value for N is 56:

>>> 2%%52
4503599627370496
>>> 2x%53
9007199254740992
>>> 2%%56/10
7205759403792793

That is, 56 is the only value for N that leaves J with exactly 53 bits. The best possible value for J is then that quotient
rounded:

>>> g, r = divmod(2xx56, 10)
>>> r
6

Since the remainder is more than half of 10, the best approximation is obtained by rounding up:

>>> g+1
7205759403792794

Therefore the best possible approximation to 1/10 in 754 double precision is that over 2**56, or
7205759403792794 / 72057594037927936

Note that since we rounded up, this is actually a little bit larger than 1/10; if we had not rounded up, the quotient would
have been a little bit smaller than 1/10. But in no case can it be exactly 1/10!

So the computer never “sees” 1/10: what it sees is the exact fraction given above, the best 754 double approximation
it can get:

>>> 1 x 2%x%56
7205759403792794.0

14.1. Representation Error 99

Python Tutorial, Release 2.7.10

If we multiply that fraction by 10**30, we can see the (truncated) value of its 30 most significant decimal digits:

>>> 7205759403792794 % 10%%30 // 2%%56
100000000000000005551115123125L

meaning that the exact number stored in the computer is approximately equal to the decimal value
0.100000000000000005551115123125. In versions prior to Python 2.7 and Python 3.1, Python rounded this value
to 17 significant digits, giving ‘0.10000000000000001°. In current versions, Python displays a value based on the
shortest decimal fraction that rounds correctly back to the true binary value, resulting simply in ‘0.1°.

100 Chapter 14. Floating Point Arithmetic: Issues and Limitations

CHAPTER
FIFTEEN

APPENDIX

15.1 Interactive Mode

15.1.1 Error Handling

When an error occurs, the interpreter prints an error message and a stack trace. In interactive mode, it then returns
to the primary prompt; when input came from a file, it exits with a nonzero exit status after printing the stack trace.
(Exceptions handled by an except clause in a t ry statement are not errors in this context.) Some errors are uncon-
ditionally fatal and cause an exit with a nonzero exit; this applies to internal inconsistencies and some cases of running
out of memory. All error messages are written to the standard error stream; normal output from executed commands
is written to standard output.

Typing the interrupt character (usually Control-C or DEL) to the primary or secondary prompt cancels the input and
returns to the primary prompt. ' Typing an interrupt while a command is executing raises the KeyboardInterrupt
exception, which may be handled by a t ry statement.

15.1.2 Executable Python Scripts

On BSD’ish Unix systems, Python scripts can be made directly executable, like shell scripts, by putting the line
#!/usr/bin/env python

(assuming that the interpreter is on the user’s PATH) at the beginning of the script and giving the file an executable
mode. The #! must be the first two characters of the file. On some platforms, this first line must end with a Unix-style
line ending (’ \n’), not a Windows (’ \r\n’) line ending. Note that the hash, or pound, character, * #"’, is used to
start a comment in Python.

The script can be given an executable mode, or permission, using the chmod command.
$ chmod +x myscript.py

On Windows systems, there is no notion of an “executable mode”. The Python installer automatically associates . py
files with python . exe so that a double-click on a Python file will run it as a script. The extension can also be . pyw,
in that case, the console window that normally appears is suppressed.

15.1.3 The Interactive Startup File

When you use Python interactively, it is frequently handy to have some standard commands executed every time the
interpreter is started. You can do this by setting an environment variable named PYTHONSTARTUP to the name of a
file containing your start-up commands. This is similar to the . profile feature of the Unix shells.

! A problem with the GNU Readline package may prevent this.

101

Python Tutorial, Release 2.7.10

This file is only read in interactive sessions, not when Python reads commands from a script, and not when /dev/tty
is given as the explicit source of commands (which otherwise behaves like an interactive session). It is executed in
the same namespace where interactive commands are executed, so that objects that it defines or imports can be used
without qualification in the interactive session. You can also change the prompts sys.ps1 and sys.ps2 in this file.

If you want to read an additional start-up file from the current directory, you can program
this in the global start-up file using code like if os.path.isfile(’.pythonrc.py’):
exec (open (’ .pythonrc.py’) .read()). If you want to use the startup file in a script, you must do
this explicitly in the script:

import os
filename = os.environ.get ('PYTHONSTARTUP')
if filename and os.path.isfile(filename) :
with open(filename) as fobj:
startup_file = fobj.read()
exec (startup_file)

15.1.4 The Customization Modules

Python provides two hooks to let you customize it: sitecustomize and usercustomize. To see how it works,
you need first to find the location of your user site-packages directory. Start Python and run this code:

>>> import site
>>> site.getusersitepackages()
'/home/user/.local/lib/python2.7/site-packages'

Now you can create a file named usercustomize.py in that directory and put anything you want in it. It will
affect every invocation of Python, unless it is started with the —s option to disable the automatic import.

sitecustomize works in the same way, but is typically created by an administrator of the computer in the global
site-packages directory, and is imported before usercustomize. See the documentation of the site module for
more details.

102 Chapter 15. Appendix

APPENDIX
A

>>>

2to3

GLOSSARY

The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

The default Python prompt of the interactive shell when entering code for an indented code block or within a
pair of matching left and right delimiters (parentheses, square brackets or curly braces).

A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which
can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as 1ib2to3; a standalone entry point is provided as
Tools/scripts/2to3. See 2to3-reference.

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces when

other techniques like hasattr () would be clumsy or subtly wrong (for example with magic methods).
ABGCs introduce virtual subclasses, which are classes that don’t inherit from a class but are still recognized
by isinstance () and issubclass (); see the abc module documentation. Python comes with many
built-in ABCs for data structures (in the collections module), numbers (in the numbers module), and
streams (in the 1o module). You can create your own ABCs with the abc module.

argument A value passed to a function (or method) when calling the function. There are two types of arguments:

* keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a
value in a dictionary preceded by = . For example, 3 and 5 are both keyword arguments in the following
calls to complex ():

complex (real=3, imag=b5)
complex (xx{'real': 3, 'imag': 5})

* positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by =. For example, 3
and 5 are both positional arguments in the following calls:

complex (3, 5)
complex (x (3, 5))

Arguments are assigned to the named local variables in a function body. See the calls section for the rules
governing this assignment. Syntactically, any expression can be used to represent an argument; the evaluated
value is assigned to the local variable.

See also the parameter glossary entry and the FAQ question on the difference between arguments and parame-
ters.

attribute A value associated with an object which is referenced by name using dotted expressions. For example, if

an object o has an attribute a it would be referenced as o.a.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

103

https://www.python.org/~guido/

Python Tutorial, Release 2.7.10

bytes-like object An object that supports the buffer protocol, like str, bytearray or memoryview. Bytes-like

objects can be used for various operations that expect binary data, such as compression, saving to a binary file
or sending over a socket. Some operations need the binary data to be mutable, in which case not all bytes-like
objects can apply.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the

CPython interpreter. The bytecode is also cached in .pyc and .pyo files so that executing the same file is
faster the second time (recompilation from source to bytecode can be avoided). This “intermediate language” is
said to run on a virtual machine that executes the machine code corresponding to each bytecode. Do note that
bytecodes are not expected to work between different Python virtual machines, nor to be stable between Python
releases.

A list of bytecode instructions can be found in the documentation for the dis module.

class A template for creating user-defined objects. Class definitions normally contain method definitions which

operate on instances of the class.

classic class Any class which does not inherit from ob ject. See new-style class. Classic classes have been removed

in Python 3.

coercion The implicit conversion of an instance of one type to another during an operation which involves two

arguments of the same type. For example, int (3.15) converts the floating point number to the integer 3,
but in 3+4. 5, each argument is of a different type (one int, one float), and both must be converted to the same
type before they can be added or it will raise a TypeError. Coercion between two operands can be performed
with the coerce built-in function; thus, 3+4.5 is equivalent to calling operator.add (xcoerce (3,
4.5)) and results in operator.add (3.0, 4.5). Without coercion, all arguments of even compatible
types would have to be normalized to the same value by the programmer, e.g., f1oat (3) +4. 5 rather than just
3+4.5.

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of

a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root
of —1), often written i in mathematics or j in engineering. Python has built-in support for complex numbers,
which are written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get
access to complex equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced
mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a with statement by defining __enter__ ()

and __exit__ () methods. See PEP 343.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The term

“CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the Qwrapper

syntax. Common examples for decorators are classmethod () and staticmethod ().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equiva-
lent:

def f£(...):
f = staticmethod (f)

@staticmethod
def f(...):

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions and class definitions for more about decorators.

104

Appendix A. Glossary

http://www.python.org/dev/peps/pep-0343
https://www.python.org

Python Tutorial, Release 2.7.10

descriptor Any new-style object which defines the methods __get__ (), __set__ (), or __delete__ ().
When a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Nor-
mally, using a.b to get, set or delete an attribute looks up the object named b in the class dictionary for a, but
if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to a deep
understanding of Python because they are the basis for many features including functions, methods, properties,
class methods, static methods, and reference to super classes.

For more information about descriptors’ methods, see descriptors.

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__ () and __eqg__ () methods. Called a hash in Perl.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the ___doc___ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right interface;
instead, the method or attribute is simply called or used (“If it looks like a duck and quacks like a duck, it must
be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility
by allowing polymorphic substitution. Duck-typing avoids tests using type () or isinstance (). (Note,
however, that duck-typing can be complemented with abstract base classes.) Instead, it typically employs
hasattr () tests or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence
of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is
characterized by the presence of many try and except statements. The technique contrasts with the LBYL
style common to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements
which cannot be used as expressions, such as print or 1 f. Assignments are also statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.

file object An object exposing a file-oriented API (with methods such as read () or write ()) to an underlying
resource. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another
type of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their
interfaces are defined in the io module. The canonical way to create a file object is by using the open ()
function.

file-like object A synonym for file object.

finder An object that tries to find the loader for a module. It must implement a method named find_module ().
See PEP 302 for details.

floor division Mathematical division that rounds down to nearest integer. The floor division operator is //. For
example, the expression 11 // 4 evaluates to 2 in contrast to the 2. 75 returned by float true division. Note
that (-11) // 4 is -3 because thatis —2 .75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. See also parameter, method, and the function section.

__future__ A pseudo-module which programmers can use to enable new language features which are not compatible
with the current interpreter. For example, the expression 11 /4 currently evaluates to 2. If the module in which
it is executed had enabled true division by executing:

105

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0238

Python Tutorial, Release 2.7.10

from _ future import division

the expression 11/4 would evaluate to 2.75. By importing the ___future___ module and evaluating its
variables, you can see when a new feature was first added to the language and when it will become the default:

>>> import __ future_
>>> _ future_ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator A function which returns an iterator. It looks like a normal function except that it contains yield
statements for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next () function. Each yield temporarily suspends processing, remembering the location execution state
(including local variables and pending try-statements). When the generator resumes, it picks-up where it left-off
(in contrast to functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a for
expression defining a loop variable, range, and an optional i f expression. The combined expression generates
values for an enclosing function:

>>> sum(ixi for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

GIL See global interpreter lock.

global interpreter lock The mechanism used by the CPyrhon interpreter to assure that only one thread executes
Python bytecode at a time. This simplifies the CPython implementation by making the object model (including
critical built-in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter
makes it easier for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by
multi-processor machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when
doing I/O.

Past efforts to create a “free-threaded” interpreter (one which locks shared data at a much finer granularity)
have not been successful because performance suffered in the common single-processor case. It is believed
that overcoming this performance issue would make the implementation much more complicated and therefore
costlier to maintain.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__ () method), and can be compared to other objects (it needs an __eq__ () or __cmp__ ()
method). Hashable objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionar-
ies) are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal
(except with themselves), and their hash value is their id ().

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment which
ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the expression 11 /4 currently eval-
uates to 2 in contrast to the 2. 75 returned by float division. Also called floor division. When dividing two

106 Appendix A. Glossary

Python Tutorial, Release 2.7.10

integers the outcome will always be another integer (having the floor function applied to it). However, if one of
the operands is another numeric type (such as a £ 1oat), the result will be coerced (see coercion) to a common
type. For example, an integer divided by a float will result in a float value, possibly with a decimal fraction.
Integer division can be forced by using the // operator instead of the / operator. See also __future__.

importing The process by which Python code in one module is made available to Python code in another module.
importer An object that both finds and loads a module; both a finder and loader object.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the in-
terpreter prompt, immediately execute them and see their results. Just launch python with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or
inspect modules and packages (remember help (x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry
because of the presence of the bytecode compiler. This means that source files can be run directly without explic-
itly creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. See also interactive.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types
(suchas 1ist, str, and tuple) and some non-sequence types like dict and £1i1le and objects of any classes
you define with an __iter_ () or __getitem__ () method. Iterables can be used in a for loop and in
many other places where a sequence is needed (zip (), map (), ...). When an iterable object is passed as an
argument to the built-in function iter (), it returns an iterator for the object. This iterator is good for one pass
over the set of values. When using iterables, it is usually not necessary to call iter () or deal with iterator
objects yourself. The for statement does that automatically for you, creating a temporary unnamed variable to
hold the iterator for the duration of the loop. See also iterator, sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s next () method return successive
items in the stream. When no more data are available a StopIteration exception is raised instead. At this
point, the iterator object is exhausted and any further calls to its next () method just raise StopIteration
again. Iterators are required to have an __iter__ () method that returns the iterator object itself so every
iterator is also iterable and may be used in most places where other iterables are accepted. One notable exception
is code which attempts multiple iteration passes. A container object (such as a 1ist) produces a fresh new
iterator each time you pass it to the iter () function or use it in a for loop. Attempting this with an iterator
will just return the same exhausted iterator object used in the previous iteration pass, making it appear like an
empty container.

More information can be found in fypeiter.

key function A key function or collation function is a callable that returns a value used for sorting or ordering. For
example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min (), max (), sorted (), list.sort (), heapg.nsmallest (), heapg.nlargest (), and
itertools.groupby ().

There are several ways to create a key function. For example. the str.lower () method can serve as a key
function for case insensitive sorts. Alternatively, an ad-hoc key function can be built from a 1ambda expression
such as lambda r: (r[0], r[2]). Also,the operator module provides three key function construc-
tors: attrgetter (), itemgetter (), and methodcaller (). See the Sorting HOW TO for examples
of how to create and use key functions.

keyword argument See argument.

lambda An anonymous inline function consisting of a single expression which is evaluated when the function is
called. The syntax to create a lambda function is 1ambda [arguments]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with the EAFP approach and is characterized by the presence of many i f statements.

107

Python Tutorial, Release 2.7.10

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between “the look-
ing” and “the leaping”. For example, the code, if key in mapping: return mappinglkey] can
fail if another thread removes key from mapping after the test, but before the lookup. This issue can be solved
with locks or by using the EAFP approach.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements are O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the
results. result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates alist of
strings containing even hex numbers (0x..) in the range from O to 255. The i £ clause is optional. If omitted, all
elements in range (256) are processed.

loader An object that loads a module. It must define a method named load_module (). A loader is typically
returned by a finder. See PEP 302 for details.

mapping A container object that supports arbitrary key lookups and implements the methods spec-
ified in the Mapping or MutableMapping abstract base classes. Examples include dict,
collections.defaultdict, collections.OrderedDict and collections.Counter.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

More information can be found in metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its first argument (which is usually called self). See function and nested
scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member
during lookup. See The Python 2.3 Method Resolution Order.

module An object that serves as an organizational unit of Python code. Modules have a namespace containing
arbitrary Python objects. Modules are loaded into Python by the process of importing.

See also package.
MRO See method resolution order.
mutable Mutable objects can change their value but keep their 1d () . See also immutable.

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for example,
time.localtime () returns a tuple-like object where the year is accessible either with an index such as
t [0] or with a named attribute like t . tm_year).

A named tuple can be a built-in type such as time.struct_time, or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function
collections.namedtuple (). The latter approach automatically provides extra features such as a self-
documenting representation like Employee (name=’' jones’, title='programmer’).

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support mod-
ularity by preventing naming conflicts. For instance, the functions __builtin__.open () and os.open ()
are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear
which module implements a function. For instance, writing random.seed () or itertools.izip ()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

108 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

Python Tutorial, Release 2.7.10

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read
and write in the innermost scope. Likewise, global variables read and write to the global namespace.

new-style class Any class which inherits from object. This includes all built-in types like 1ist and dict.
Only new-style classes can use Python’s newer, versatile features like ___slots__, descriptors, properties, and
__getattribute__ ().

More information can be found in newstyle.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

package A Python module which can contain submodules or recursively, subpackages. Technically, a package is a
Python module with an __path___ attribute.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases, argu-
ments) that the function can accept. There are four types of parameters:

* positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argu-
ment. This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None):

* positional-only: specifies an argument that can be supplied only by position. Python has no syntax for
defining positional-only parameters. However, some built-in functions have positional-only parameters
(e.g. abs ()).

* var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition
to any positional arguments already accepted by other parameters). Such a parameter can be defined by
prepending the parameter name with «, for example args in the following:

def func(xargs, xxkwargs):

* var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with «, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional argu-
ments.

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters,
and the function section.

positional argument See argument.

Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something
in the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather
than implementing code using concepts common to other languages. For example, a common idiom in Python
is to loop over all elements of an iterable using a for statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)) :
print food[i]

As opposed to the cleaner, Pythonic method:

for piece in food:
print piece

109

Python Tutorial, Release 2.7.10

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sys module defines a getrefcount () function that programmers can call to return
the reference count for a particular object.

__slots__ A declaration inside a new-style class that saves memory by pre-declaring space for instance attributes
and eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best
reserved for rare cases where there are large numbers of instances in a memory-critical application.

sequence An iterable which supports efficient element access using integer indices viathe __getitem__ () special
method and defines a 1en () method that returns the length of the sequence. Some built-in sequence types are
list, str, tuple, and unicode. Note that dict also supports __getitem__ () and __len__ (), but
is considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than
integers.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation,
[1 with colons between numbers when several are given, such as in variable_name[1:3:5]. The
bracket (subscript) notation uses slice objects internally (or in older versions, getslice_ () and
__setslice__()).

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addition.
Such methods have names starting and ending with double underscores. Special methods are documented in
specialnames.

statement A statement is part of a suite (a “block™ of code). A statement is either an expression or one of several
constructs with a keyword, such as i f, while or for.

struct sequence A tuple with named elements. Struct sequences expose an interface similiar to named tuple in that
elements can either be accessed either by index or as an attribute. However, they do not have any of the named
tuple methods like _make () or _asdict (). Examples of struct sequences include sys.float_info and
the return value of os.stat ().

triple-quoted string A string which is bound by three instances of either a quotation mark () or an apostrophe
(). While they don’t provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they can
span multiple lines without the use of the continuation character, making them especially useful when writing
docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its ___class___ attribute or can be retrieved with t ype (ob7j) .

universal newlines A manner of interpreting text streams in which all of the following are recognized as ending a
line: the Unix end-of-line convention ’ \n’ , the Windows convention ’ \r\n’, and the old Macintosh conven-
tion “ \r’. See PEP 278 and PEP 3116, as well as str.splitlines () for an additional use.

view The objects returned from dict.viewkeys (), dict.viewvalues (), and dict.viewitems () are
called dictionary views. They are lazy sequences that will see changes in the underlying dictionary. To force the
dictionary view to become a full list use 1ist (dictview). See dict-views.

virtual environment A cooperatively isolated runtime environment that allows Python users and applications to
install and upgrade Python distribution packages without interfering with the behaviour of other Python appli-
cations running on the same system.

virtual machine A computer defined entirely in software. Python’s virtual machine executes the byrecode emitted
by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing “import this” at the interactive prompt.

110 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0278
http://www.python.org/dev/peps/pep-3116

APPENDIX
B

ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written
for the Python documentation.

Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If you want
to contribute, please take a look at the reporting-bugs page for information on how to do so. New volunteers are always
welcome!

Many thanks go to:
 Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
* the Docutils project for creating reStructuredText and the Docutils suite;

* Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python Documentation

Many people have contributed to the Python language, the Python standard library, and the Python documentation.
See Misc/ACKS in the Python source distribution for a partial list of contributors.

It is only with the input and contributions of the Python community that Python has such wonderful documentation —
Thank You!

111

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://hg.python.org/cpython/file/2.7/Misc/ACKS

Python Tutorial, Release 2.7.10

112 Appendix B. About these documents

APPENDIX
C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation
is a sponsoring member of the PSF.

All Python releases are Open Source (see http://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from | Year Owner GPL compatible?
0.9.0thru1.2 | n/a 1991-1995 | CWI yes
1.3thrul5.2 | 1.2 1995-1999 | CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com | no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
213 212 2002 PSF yes
2.2 and above | 2.1.1 2001-now | PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses

make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.7.10

113

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
https://www.python.org/psf/
http://opensource.org/

Python Tutorial, Release 2.7.10

. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or Or-

ganization (“Licensee”) accessing and otherwise using Python 2.7.10 software in source or binary form and its
associated documentation.

Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.7.10 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2015 Python Software
Foundation; All Rights Reserved” are retained in Python 2.7.10 alone or in any derivative version prepared by
Licensee.

In the event Licensee prepares a derivative work that is based on or incorporates Python 2.7.10 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 2.7.10.

PSF is making Python 2.7.10 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 2.7.10 WILL
NOT INFRINGE ANY THIRD PARTY RIGHTS.

PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.10 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.10, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

This License Agreement will automatically terminate upon a material breach of its terms and conditions.

Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint
venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.

By copying, installing or otherwise using Python 2.7.10, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,

Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee
a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

This License Agreement will automatically terminate upon a material breach of its terms and conditions.

114

Appendix C. History and License

Python Tutorial, Release 2.7.10

. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-

fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on that web page.

. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions

of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an office

at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (‘“Licensee”)
accessing and otherwise using Python 1.6.1 software in source or binary form and its associated documentation.

. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclusive,

royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided, however, that
CNRTI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyright © 1995-2001 Corporation for
National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement, Licensee may substitute the
following text (omitting the quotes): “Python 1.6.1 is made available subject to the terms and conditions in
CNRTI’s License Agreement. This Agreement together with Python 1.6.1 may be located on the Internet using
the following unique, persistent identifier (known as a handle): 1895.22/1013. This Agreement may also be
obtained from a proxy server on the Internet using the following URL: http://hdl.handle.net/1895.22/1013.”

. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part thereof,

and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

This License Agreement will automatically terminate upon a material breach of its terms and conditions.

This License Agreement shall be governed by the federal intellectual property law of the United States, including
without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply, by the
law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstanding the
foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable material that
was previously distributed under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or with respect to Paragraphs 4, 5,
and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between CNRI and Licensee. This License Agreement does not grant
permission to use CNRI trademarks or trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python 1.6.1,
Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT

C.2.

Terms and conditions for accessing or otherwise using Python 115

http://www.pythonlabs.com/logos.html
http://hdl.handle.net/1895.22/1013

Python Tutorial, Release 2.7.10

CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2
Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated
in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-
mat/MT/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

116 Appendix C. History and License

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Python Tutorial, Release 2.7.10

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate
source files from the WIDE Project, http:/www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS "~ "AS IS'' AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE

FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpect 1 module includes the following notice:

/ Copyright (c) 1996. \

C.3. Licenses and Acknowledgements for Incorporated Software 117

http://www.wide.ad.jp/

Python Tutorial, Release 2.7.10

The Regents of the University of California.
All rights reserved.

Permission to use, copy, modify, and distribute this software for
any purpose without fee is hereby granted, provided that this en-
tire notice is included in all copies of any software which is or
includes a copy or modification of this software and in all
copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence
Livermore National Laboratory under contract no. W-7405-ENG-48
between the U.S. Department of Energy and The Regents of the
University of California for the operation of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor the University of California nor any of their em-
ployees, makes any warranty, express or implied, or assumes any
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its wuse would not infringe
privately-owned rights. Reference herein to any specific commer-—
cial products, ©process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University
of California, and shall not be used for advertising or product
\ endorsement purposes. /

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

118 Appendix C. History and License

Python Tutorial, Release 2.7.10

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).
This code implements the MD5 Algorithm defined in RFC 1321, whose

text is available at
http://www.ietf.org/rfc/rfcl321.txt

The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include

any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order) :

2002-04-13 1lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

1999-11-04 1lpd Edited comments slightly for automatic TOC extraction.
1999-10-18 1lpd Fixed typo in header comment (ansi2knr rather than md5);

added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.
1999-05-03 1lpd Original wversion.

C.3.5 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software

119

Python Tutorial, Release 2.7.10

C.3.6 Cookie management

The Cookie module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.7 Execution tracing

The t race module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,

120 Appendix C. History and License

Python Tutorial, Release 2.7.10

Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.8 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLTED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.9 XML Remote Procedure Calls

The xm1rpclib module contains the following notice:

The XML-RPC client interface 1is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

C.3. Licenses and Acknowledgements for Incorporated Software 121

Python Tutorial, Release 2.7.10

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.10 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.11 Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "~ "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

122 Appendix C. History and License

Python Tutorial, Release 2.7.10

ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.12 strtod and dtoa

The file Python/dtoa. c, which supplies C functions dtoa and strtod for conversion of C doubles to and from
strings, is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/.
The original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**
The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*

*

*

*

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
* 1s included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.
*
*
*
*
*
*
*

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

**/

C.3.13 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available
by the operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of the
OpenSSL libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

C.3. Licenses and Acknowledgements for Incorporated Software 123

http://www.netlib.org/fp/

Python Tutorial, Release 2.7.10

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eayl@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

E O S . T T I R O . . . S NS S S S S T S S . . . T R R N L S S S S S S NS N .

Original SSLeay License

124 Appendix C. History and License

Python Tutorial, Release 2.7.10

L I S R S R . A N T S S . S T I S R e S S S S S S N N .

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not Jjust the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or

C.3. Licenses and Acknowledgements for Incorporated Software 125

Python Tutorial, Release 2.7.10

* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence

* [including the GNU Public Licence.]

*/

C.3.14 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.15 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
——with-system—-1libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the

‘" Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

126 Appendix C. History and License

Python Tutorial, Release 2.7.10

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

The z11ib extension is built using an included copy of the zlib sources if the zlib version found on the system is too
old to be used for the build:

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3. Licenses and Acknowledgements for Incorporated Software 127

Python Tutorial, Release 2.7.10

128 Appendix C. History and License

APPENDIX
D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2015 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

129

Python Tutorial, Release 2.7.10

130 Appendix D. Copyright

Symbols

statement, 26
kk
statement, 26
..., 103
all 47
__ builtin__
module, 45
_ future__, 105
_slots__, 110
>>> 103
2to3, 103

A

abstract base class, 103
argument, 103
attribute, 103

B

BDFL, 103
built-in function
help, 77
open, 52
unicode, 15
bytecode, 104
bytes-like object, 104

C

class, 104
classic class, 104
coding

style, 27
coercion, 104
compileall

module, 44
complex number, 104
context manager, 104
CPython, 104

D

decorator, 104

INDEX

descriptor, 105

dictionary, 105

docstring, 105

docstrings, 22, 27
documentation strings, 22, 27
duck-typing, 105

E

EAFP, 105

environment variable
PATH, 43, 101
PYTHONPATH, 43, 44
PYTHONSTARTUP, 94, 101

expression, 105

extension module, 105

F

file

object, 52
file object, 105
file-like object, 105
finder, 105
floor division, 105
for

statement, 19
function, 105

G

garbage collection, 106
generator, 106, 106

generator expression, 106, 106
GIL, 106

global interpreter lock, 106

H

hashable, 106
help
built-in function, 77

IDLE, 106
immutable, 106

131

Python Tutorial, Release 2.7.10

importer, 107
importing, 107
integer division, 106
interactive, 107
interpreted, 107
iterable, 107
iterator, 107

J
json
module, 54

K

key function, 107
keyword argument, 107

L

lambda, 107

LBYL, 107

list, 108

list comprehension, 108
loader, 108

M

mapping, 108

metaclass, 108

method, 108
object, 66

method resolution order, 108

module, 108
__builtin__, 45
compileall, 44
json, 54
readline, 94
rlcompleter, 94
search path, 43
sys, 44

MRO, 108

mutable, 108

N

named tuple, 108
namespace, 108
nested scope, 109
new-style class, 109

O

object, 109
file, 52
method, 66
open
built-in function, 52

P

package, 109
parameter, 109
PATH, 43, 101
path

module search, 43
positional argument, 109
Python 3000, 109

Python Enhancement Proposals

PEP 238, 105
PEP 278, 110
PEP 302, 105, 108
PEP 3116, 110
PEP 343, 104
PEP 8, 27
Pythonic, 109
PYTHONPATH, 43, 44

PYTHONSTARTUP, 94, 101

R

readline

module, 94
reference count, 110
rlcompleter

module, 94

S

search

path, module, 43
sequence, 110
slice, 110
special method, 110
statement, 110

* 26

k% 06

for, 19

strings, documentation, 22, 27

struct sequence, 110
style

coding, 27
Sys

module, 44

T

triple-quoted string, 110
type, 110

U

unicode
built-in function, 15
universal newlines, 110

Vv

view, 110

132

Python Tutorial, Release 2.7.10

virtual environment, 110
virtual machine, 110

Z

Zen of Python, 110

Index 133

	Whetting Your Appetite
	Using the Python Interpreter
	Invoking the Interpreter
	The Interpreter and Its Environment

	An Informal Introduction to Python
	Using Python as a Calculator
	First Steps Towards Programming

	More Control Flow Tools
	if Statements
	for Statements
	The range() Function
	break and continue Statements, and else Clauses on Loops
	pass Statements
	Defining Functions
	More on Defining Functions
	Intermezzo: Coding Style

	Data Structures
	More on Lists
	The del statement
	Tuples and Sequences
	Sets
	Dictionaries
	Looping Techniques
	More on Conditions
	Comparing Sequences and Other Types

	Modules
	More on Modules
	Standard Modules
	The dir() Function
	Packages

	Input and Output
	Fancier Output Formatting
	Reading and Writing Files

	Errors and Exceptions
	Syntax Errors
	Exceptions
	Handling Exceptions
	Raising Exceptions
	User-defined Exceptions
	Defining Clean-up Actions
	Predefined Clean-up Actions

	Classes
	A Word About Names and Objects
	Python Scopes and Namespaces
	A First Look at Classes
	Random Remarks
	Inheritance
	Private Variables and Class-local References
	Odds and Ends
	Exceptions Are Classes Too
	Iterators
	Generators
	Generator Expressions

	Brief Tour of the Standard Library
	Operating System Interface
	File Wildcards
	Command Line Arguments
	Error Output Redirection and Program Termination
	String Pattern Matching
	Mathematics
	Internet Access
	Dates and Times
	Data Compression
	Performance Measurement
	Quality Control
	Batteries Included

	Brief Tour of the Standard Library – Part II
	Output Formatting
	Templating
	Working with Binary Data Record Layouts
	Multi-threading
	Logging
	Weak References
	Tools for Working with Lists
	Decimal Floating Point Arithmetic

	What Now?
	Interactive Input Editing and History Substitution
	Line Editing
	History Substitution
	Key Bindings
	Alternatives to the Interactive Interpreter

	Floating Point Arithmetic: Issues and Limitations
	Representation Error

	Appendix
	Interactive Mode

	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Index

