Installing Python Modules
Release 2.7.10

Guido van Rossum
and the Python development team

June 01, 2015

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Key terms 3
2 Basic usage 5
3 HowdolI..? 7
3.1 .. install pip in versions of Python prior to Python2.7.97 7
3.2 .. install packages just for the currentuser? Lo 7
3.3 ... install scientific Python packages? e 7
3.4 ... work with multiple versions of Python installed in parallel? 7
4 Common installation issues 9
4.1 Installing into the system PythononLinux 9
4.2 Installing binary eXtensionsot e e e e e e e e e e e e e e e 9
A Glossary 11
B About these documents 19
B.1 Contributors to the Python Documentation 19
C History and License 21
C.1 Historyofthe software e 21
C.2 Terms and conditions for accessing or otherwise using Python 21
C.3 Licenses and Acknowledgements for Incorporated Software 24
D Copyright 37

Index 39

Installing Python Modules, Release 2.7.10

Email distutils-sig@python.org

As a popular open source development project, Python has an active supporting community of contributors and users
that also make their software available for other Python developers to use under open source license terms.

This allows Python users to share and collaborate effectively, benefiting from the solutions others have already created
to common (and sometimes even rare!) problems, as well as potentially contributing their own solutions to the common
pool.

This guide covers the installation part of the process. For a guide to creating and sharing your own Python projects,
refer to the distribution guide.

Note: For corporate and other institutional users, be aware that many organisations have their own policies around
using and contributing to open source software. Please take such policies into account when making use of the

distribution and installation tools provided with Python.

CONTENTS 1

mailto:distutils-sig@python.org

Installing Python Modules, Release 2.7.10

2 CONTENTS

CHAPTER
ONE

KEY TERMS

pip is the preferred installer program. Starting with Python 2.7.9, it is included by default with the Python
binary installers.

a virtual environment is a semi-isolated Python environment that allows packages to be installed for use by a
particular application, rather than being installed system wide

virtualenv is a third party tools for creating virtual environments, it is defaults to installing pip into all
created virtual environments.

the Python Packaging Index is a public repository of open source licensed packages made available for use by
other Python users

the Python Packaging Authority are the group of developers and documentation authors responsible for the
maintenance and evolution of the standard packaging tools and the associated metadata and file format standards.
They maintain a variety of tools, documentation and issue trackers on both GitHub and BitBucket.

distutils is the original build and distribution system first added to the Python standard library in 1998.
While direct use of distutils is being phased out, it still laid the foundation for the current packaging and
distribution infrastructure, and it not only remains part of the standard library, but its name lives on in other
ways (such as the name of the mailing list used to coordinate Python packaging standards development).

https://pypi.python.org/pypi
https://packaging.python.org/en/latest/future.html
https://github.com/pypa
https://bitbucket.org/pypa/

Installing Python Modules, Release 2.7.10

4 Chapter 1. Key terms

CHAPTER
TWO

BASIC USAGE

The standard packaging tools are all designed to be used from the command line.

The following command will install the latest version of a module and its dependencies from the Python Packaging
Index:

python -m pip install SomePackage

Note: For POSIX users (including Mac OS X and Linux users), the examples in this guide assume the
use of a virtual environment. You may install virtualenv to provide such environments using either pip

(pip install virtualenv) or through your system package manager (commonly called virtualenv or
python-virtualenv).

For Windows users, the examples in this guide assume that the option to adjust the system PATH environment variable
was selected when installing Python.

It’s also possible to specify an exact or minimum version directly on the command line:

python -m pip install SomePackage==1.0.4 # specific version
python -m pip install 'SomePackage>=1.0.4' # minimum version

Normally, if a suitable module is already installed, attempting to install it again will have no effect. Upgrading existing
modules must be requested explicitly:

python -m pip install --upgrade SomePackage
More information and resources regarding pip and its capabilities can be found in the Python Packaging User Guide.
See also:

Python Packaging User Guide: Installing Python Distribution Packages

https://packaging.python.org
https://packaging.python.org/en/latest/installing.html#installing-python-distribution-packages

Installing Python Modules, Release 2.7.10

6 Chapter 2. Basic usage

CHAPTER
THREE

HOWDOI...?

These are quick answers or links for some common tasks.

3.1 ... install pip in versions of Python prior to Python 2.7.9?

Python only started bundling pip with Python 2.7.9. For earlier versions, pip needs to be “bootstrapped” as described
in the Python Packaging User Guide.

See also:

Python Packaging User Guide: Setup for Installing Distribution Packages

3.2 ... install packages just for the current user?

Passing the ——user option to python -m pip install will install a package just for the current user, rather
than for all users of the system.

3.3 ... install scientific Python packages?

A number of scientific Python packages have complex binary dependencies, and aren’t currently easy to install using
pip directly. At this point in time, it will often be easier for users to install these packages by other means rather than
attempting to install them with pip.

See also:

Python Packaging User Guide: Installing Scientific Packages

3.4 ... work with multiple versions of Python installed in parallel?

On Linux, Mac OS X and other POSIX systems, use the versioned Python commands in combination with the —m
switch to run the appropriate copy of pip:

python2 -m pip install SomePackage # default Python 2
python2.7 -m pip install SomePackage # specifically Python 2.7
python3 -m pip install SomePackage # default Python 3
python3.4 -m pip install SomePackage # specifically Python 3.4

https://packaging.python.org/en/latest/installing.html#setup-for-installing-distribution-packages
https://packaging.python.org/en/latest/science.html
https://packaging.python.org/en/latest/science.html

Installing Python Modules, Release 2.7.10

(appropriately versioned pip commands may also be available)

On Windows, use the py Python launcher in combination with the —m switch:

py -2 -m pip install SomePackage # default Python 2
py —-2.7 -m pip install SomePackage # specifically Python 2.7
py -3 -m pip install SomePackage # default Python 3

py —-3.4 -m pip install SomePackage # specifically Python 3.4

8 Chapter 3. Howdol...?

CHAPTER
FOUR

COMMON INSTALLATION ISSUES

4.1 Installing into the system Python on Linux

On Linux systems, a Python installation will typically be included as part of the distribution. Installing into this Python
installation requires root access to the system, and may interfere with the operation of the system package manager
and other components of the system if a component is unexpectedly upgraded using pip.

On such systems, it is often better to use a virtual environment or a per-user installation when installing packages with
pip.

4.2 Installing binary extensions

Python has typically relied heavily on source based distribution, with end users being expected to compile extension
modules from source as part of the installation process.

With the introduction of support for the binary wheel format, and the ability to publish wheels for at least Windows
and Mac OS X through the Python Packaging Index, this problem is expected to diminish over time, as users are more
regularly able to install pre-built extensions rather than needing to build them themselves.

Some of the solutions for installing scientific software that is not yet available as pre-built wheel files may also help
with obtaining other binary extensions without needing to build them locally.

See also:

Python Packaging User Guide: Binary Extensions

https://packaging.python.org/en/latest/science.html
https://packaging.python.org/en/latest/extensions.html

Installing Python Modules, Release 2.7.10

10 Chapter 4. Common installation issues

APPENDIX
A

>>>

2to3

GLOSSARY

The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

The default Python prompt of the interactive shell when entering code for an indented code block or within a
pair of matching left and right delimiters (parentheses, square brackets or curly braces).

A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which
can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as 1ib2to3; a standalone entry point is provided as
Tools/scripts/2to3. See 2to3-reference.

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces when

other techniques like hasattr () would be clumsy or subtly wrong (for example with magic methods).
ABGCs introduce virtual subclasses, which are classes that don’t inherit from a class but are still recognized
by isinstance () and issubclass (); see the abc module documentation. Python comes with many
built-in ABCs for data structures (in the collections module), numbers (in the numbers module), and
streams (in the 1o module). You can create your own ABCs with the abc module.

argument A value passed to a function (or method) when calling the function. There are two types of arguments:

* keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a
value in a dictionary preceded by = . For example, 3 and 5 are both keyword arguments in the following
calls to complex ():

complex (real=3, imag=5)
complex (**x{'real': 3, 'imag': 5})

* positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by =. For example, 3
and 5 are both positional arguments in the following calls:

complex (3, 5)
complex (* (3, 5))

Arguments are assigned to the named local variables in a function body. See the calls section for the rules
governing this assignment. Syntactically, any expression can be used to represent an argument; the evaluated
value is assigned to the local variable.

See also the parameter glossary entry and the FAQ question on the difference between arguments and parame-
ters.

attribute A value associated with an object which is referenced by name using dotted expressions. For example, if

an object o has an attribute a it would be referenced as o.a.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

11

https://www.python.org/~guido/

Installing Python Modules, Release 2.7.10

bytes-like object An object that supports the buffer protocol, like str, bytearray or memoryview. Bytes-like

objects can be used for various operations that expect binary data, such as compression, saving to a binary file
or sending over a socket. Some operations need the binary data to be mutable, in which case not all bytes-like
objects can apply.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the

CPython interpreter. The bytecode is also cached in .pyc and .pyo files so that executing the same file is
faster the second time (recompilation from source to bytecode can be avoided). This “intermediate language” is
said to run on a virtual machine that executes the machine code corresponding to each bytecode. Do note that
bytecodes are not expected to work between different Python virtual machines, nor to be stable between Python
releases.

A list of bytecode instructions can be found in the documentation for the dis module.

class A template for creating user-defined objects. Class definitions normally contain method definitions which

operate on instances of the class.

classic class Any class which does not inherit from ob ject. See new-style class. Classic classes have been removed

in Python 3.

coercion The implicit conversion of an instance of one type to another during an operation which involves two

arguments of the same type. For example, int (3.15) converts the floating point number to the integer 3,
but in 3+4. 5, each argument is of a different type (one int, one float), and both must be converted to the same
type before they can be added or it will raise a TypeError. Coercion between two operands can be performed
with the coerce built-in function; thus, 3+4.5 is equivalent to calling operator.add (xcoerce (3,
4.5)) and results in operator.add (3.0, 4.5). Without coercion, all arguments of even compatible
types would have to be normalized to the same value by the programmer, e.g., f1oat (3) +4. 5 rather than just
3+4.5.

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of

a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root
of —1), often written i in mathematics or j in engineering. Python has built-in support for complex numbers,
which are written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get
access to complex equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced
mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a with statement by defining __enter__ ()

and __exit__ () methods. See PEP 343.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The term

“CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the @wrapper

syntax. Common examples for decorators are classmethod () and staticmethod ().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equiva-
lent:

def f£(...):
f = staticmethod (f)

@staticmethod
def f£(...):

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions and class definitions for more about decorators.

12

Appendix A. Glossary

http://www.python.org/dev/peps/pep-0343
https://www.python.org

Installing Python Modules, Release 2.7.10

descriptor Any new-style object which defines the methods __get__ (), __set__ (), or __delete__ ().
When a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Nor-
mally, using a.b to get, set or delete an attribute looks up the object named b in the class dictionary for a, but
if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to a deep
understanding of Python because they are the basis for many features including functions, methods, properties,
class methods, static methods, and reference to super classes.

For more information about descriptors’ methods, see descriptors.

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__ () and __eqg__ () methods. Called a hash in Perl.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the ___doc___ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right interface;
instead, the method or attribute is simply called or used (“If it looks like a duck and quacks like a duck, it must
be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility
by allowing polymorphic substitution. Duck-typing avoids tests using type () or isinstance (). (Note,
however, that duck-typing can be complemented with abstract base classes.) Instead, it typically employs
hasattr () tests or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence
of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is
characterized by the presence of many try and except statements. The technique contrasts with the LBYL
style common to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements
which cannot be used as expressions, such as print or 1 f. Assignments are also statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.

file object An object exposing a file-oriented API (with methods such as read () or write ()) to an underlying
resource. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another
type of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their
interfaces are defined in the io module. The canonical way to create a file object is by using the open ()
function.

file-like object A synonym for file object.

finder An object that tries to find the loader for a module. It must implement a method named find_module ().
See PEP 302 for details.

floor division Mathematical division that rounds down to nearest integer. The floor division operator is //. For
example, the expression 11 // 4 evaluates to 2 in contrast to the 2. 75 returned by float true division. Note
that (-11) // 4 is -3 because thatis —2 .75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. See also parameter, method, and the function section.

__future__ A pseudo-module which programmers can use to enable new language features which are not compatible
with the current interpreter. For example, the expression 11 /4 currently evaluates to 2. If the module in which
it is executed had enabled true division by executing:

13

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0238

Installing Python Modules, Release 2.7.10

from future import division

the expression 11/4 would evaluate to 2.75. By importing the ___future___ module and evaluating its
variables, you can see when a new feature was first added to the language and when it will become the default:

>>> import __ future_
>>> future_ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator A function which returns an iterator. It looks like a normal function except that it contains yield
statements for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next () function. Each yield temporarily suspends processing, remembering the location execution state
(including local variables and pending try-statements). When the generator resumes, it picks-up where it left-off
(in contrast to functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a for
expression defining a loop variable, range, and an optional i f expression. The combined expression generates
values for an enclosing function:

>>> sum(ixi for 1 in range(10)) # sum of squares 0, 1, 4, ... 81
285

GIL See global interpreter lock.

global interpreter lock The mechanism used by the CPyrhon interpreter to assure that only one thread executes
Python bytecode at a time. This simplifies the CPython implementation by making the object model (including
critical built-in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter
makes it easier for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by
multi-processor machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when
doing I/O.

Past efforts to create a “free-threaded” interpreter (one which locks shared data at a much finer granularity)
have not been successful because performance suffered in the common single-processor case. It is believed
that overcoming this performance issue would make the implementation much more complicated and therefore
costlier to maintain.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__ () method), and can be compared to other objects (it needs an __eq__ () or __cmp__ ()
method). Hashable objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionar-
ies) are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal
(except with themselves), and their hash value is their id ().

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment which
ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the expression 11/4 currently eval-
uates to 2 in contrast to the 2. 75 returned by float division. Also called floor division. When dividing two

14 Appendix A. Glossary

Installing Python Modules, Release 2.7.10

integers the outcome will always be another integer (having the floor function applied to it). However, if one of
the operands is another numeric type (such as a £ 1oat), the result will be coerced (see coercion) to a common
type. For example, an integer divided by a float will result in a float value, possibly with a decimal fraction.
Integer division can be forced by using the // operator instead of the / operator. See also __future__.

importing The process by which Python code in one module is made available to Python code in another module.
importer An object that both finds and loads a module; both a finder and loader object.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the in-
terpreter prompt, immediately execute them and see their results. Just launch python with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or
inspect modules and packages (remember help (x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry
because of the presence of the bytecode compiler. This means that source files can be run directly without explic-
itly creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. See also interactive.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types
(suchas 1ist, str, and tuple) and some non-sequence types like dict and £1i1le and objects of any classes
you define with an __iter_ () or __getitem__ () method. Iterables can be used in a for loop and in
many other places where a sequence is needed (zip (), map (), ...). When an iterable object is passed as an
argument to the built-in function iter (), it returns an iterator for the object. This iterator is good for one pass
over the set of values. When using iterables, it is usually not necessary to call iter () or deal with iterator
objects yourself. The for statement does that automatically for you, creating a temporary unnamed variable to
hold the iterator for the duration of the loop. See also iterator, sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s next () method return successive
items in the stream. When no more data are available a StopIteration exception is raised instead. At this
point, the iterator object is exhausted and any further calls to its next () method just raise StopIteration
again. Iterators are required to have an __iter__ () method that returns the iterator object itself so every
iterator is also iterable and may be used in most places where other iterables are accepted. One notable exception
is code which attempts multiple iteration passes. A container object (such as a 1ist) produces a fresh new
iterator each time you pass it to the iter () function or use it in a for loop. Attempting this with an iterator
will just return the same exhausted iterator object used in the previous iteration pass, making it appear like an
empty container.

More information can be found in fypeiter.

key function A key function or collation function is a callable that returns a value used for sorting or ordering. For
example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min (), max (), sorted (), list.sort (), heapg.nsmallest (), heapg.nlargest (), and
itertools.groupby ().

There are several ways to create a key function. For example. the str.lower () method can serve as a key
function for case insensitive sorts. Alternatively, an ad-hoc key function can be built from a 1ambda expression
such as lambda r: (r[0], r[2]). Also,the operator module provides three key function construc-
tors: attrgetter (), itemgetter (), and methodcaller (). See the Sorting HOW TO for examples
of how to create and use key functions.

keyword argument See argument.

lambda An anonymous inline function consisting of a single expression which is evaluated when the function is
called. The syntax to create a lambda function is 1ambda [arguments]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with the EAFP approach and is characterized by the presence of many i f statements.

15

Installing Python Modules, Release 2.7.10

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between “the look-
ing” and “the leaping”. For example, the code, if key in mapping: return mappinglkey] can
fail if another thread removes key from mapping after the test, but before the lookup. This issue can be solved
with locks or by using the EAFP approach.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements are O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the
results. result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates alist of
strings containing even hex numbers (0x..) in the range from O to 255. The i £ clause is optional. If omitted, all
elements in range (256) are processed.

loader An object that loads a module. It must define a method named load_module (). A loader is typically
returned by a finder. See PEP 302 for details.

mapping A container object that supports arbitrary key lookups and implements the methods spec-
ified in the Mapping or MutableMapping abstract base classes. Examples include dict,
collections.defaultdict, collections.OrderedDict and collections.Counter.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

More information can be found in metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its first argument (which is usually called self). See function and nested
scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member
during lookup. See The Python 2.3 Method Resolution Order.

module An object that serves as an organizational unit of Python code. Modules have a namespace containing
arbitrary Python objects. Modules are loaded into Python by the process of importing.

See also package.
MRO See method resolution order.
mutable Mutable objects can change their value but keep their 1d () . See also immutable.

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for example,
time.localtime () returns a tuple-like object where the year is accessible either with an index such as
t [0] or with a named attribute like t . tm_year).

A named tuple can be a built-in type such as time.struct_time, or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function
collections.namedtuple (). The latter approach automatically provides extra features such as a self-
documenting representation like Employee (name=’' jones’, title='programmer’).

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support mod-
ularity by preventing naming conflicts. For instance, the functions __builtin__.open () and os.open ()
are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear
which module implements a function. For instance, writing random.seed () or itertools.izip ()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

16 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

Installing Python Modules, Release 2.7.10

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read
and write in the innermost scope. Likewise, global variables read and write to the global namespace.

new-style class Any class which inherits from object. This includes all built-in types like 1ist and dict.
Only new-style classes can use Python’s newer, versatile features like ___slots__, descriptors, properties, and
__getattribute__ ().

More information can be found in newstyle.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

package A Python module which can contain submodules or recursively, subpackages. Technically, a package is a
Python module with an __path___ attribute.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases, argu-
ments) that the function can accept. There are four types of parameters:

* positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argu-
ment. This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None) :

* positional-only: specifies an argument that can be supplied only by position. Python has no syntax for
defining positional-only parameters. However, some built-in functions have positional-only parameters
(e.g. abs ()).

* var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition
to any positional arguments already accepted by other parameters). Such a parameter can be defined by
prepending the parameter name with «, for example args in the following:

def func(xargs, =*xkwargs):

* var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with «, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional argu-
ments.

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters,
and the function section.

positional argument See argument.

Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something
in the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather
than implementing code using concepts common to other languages. For example, a common idiom in Python
is to loop over all elements of an iterable using a for statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)) :
print food[i]

As opposed to the cleaner, Pythonic method:

for piece in food:
print piece

17

Installing Python Modules, Release 2.7.10

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sys module defines a getrefcount () function that programmers can call to return
the reference count for a particular object.

__slots__ A declaration inside a new-style class that saves memory by pre-declaring space for instance attributes
and eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best
reserved for rare cases where there are large numbers of instances in a memory-critical application.

sequence An iterable which supports efficient element access using integer indices viathe __getitem__ () special
method and defines a 1en () method that returns the length of the sequence. Some built-in sequence types are
list, str, tuple, and unicode. Note that dict also supports __getitem__ () and __len__ (), but
is considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than
integers.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation,
[1 with colons between numbers when several are given, such as in variable_name[1:3:5]. The
bracket (subscript) notation uses slice objects internally (or in older versions, getslice_ () and
__setslice__()).

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addition.
Such methods have names starting and ending with double underscores. Special methods are documented in
specialnames.

statement A statement is part of a suite (a “block™ of code). A statement is either an expression or one of several
constructs with a keyword, such as i f, while or for.

struct sequence A tuple with named elements. Struct sequences expose an interface similiar to named tuple in that
elements can either be accessed either by index or as an attribute. However, they do not have any of the named
tuple methods like _make () or _asdict (). Examples of struct sequences include sys.float_info and
the return value of os.stat ().

triple-quoted string A string which is bound by three instances of either a quotation mark () or an apostrophe
(). While they don’t provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they can
span multiple lines without the use of the continuation character, making them especially useful when writing
docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its ___class___ attribute or can be retrieved with t ype (ob7j) .

universal newlines A manner of interpreting text streams in which all of the following are recognized as ending a
line: the Unix end-of-line convention ’ \n’ , the Windows convention ’ \r\n’, and the old Macintosh conven-
tion “ \r’. See PEP 278 and PEP 3116, as well as str.splitlines () for an additional use.

view The objects returned from dict.viewkeys (), dict.viewvalues (), and dict.viewitems () are
called dictionary views. They are lazy sequences that will see changes in the underlying dictionary. To force the
dictionary view to become a full list use 1ist (dictview). See dict-views.

virtual environment A cooperatively isolated runtime environment that allows Python users and applications to
install and upgrade Python distribution packages without interfering with the behaviour of other Python appli-
cations running on the same system.

virtual machine A computer defined entirely in software. Python’s virtual machine executes the byrecode emitted
by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing “import this” at the interactive prompt.

18 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0278
http://www.python.org/dev/peps/pep-3116

APPENDIX
B

ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written
for the Python documentation.

Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If you want
to contribute, please take a look at the reporting-bugs page for information on how to do so. New volunteers are always
welcome!

Many thanks go to:
 Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
* the Docutils project for creating reStructuredText and the Docutils suite;

* Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python Documentation

Many people have contributed to the Python language, the Python standard library, and the Python documentation.
See Misc/ACKS in the Python source distribution for a partial list of contributors.

It is only with the input and contributions of the Python community that Python has such wonderful documentation —
Thank You!

19

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://hg.python.org/cpython/file/2.7/Misc/ACKS

Installing Python Modules, Release 2.7.10

20

Appendix B. About these documents

APPENDIX
C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation
is a sponsoring member of the PSF.

All Python releases are Open Source (see http://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from | Year Owner GPL compatible?
0.9.0thru1.2 | n/a 1991-1995 | CWI yes
1.3thrul5.2 | 1.2 1995-1999 | CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com | no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
213 212 2002 PSF yes
2.2 and above | 2.1.1 2001-now | PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses

make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.7.10

21

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
https://www.python.org/psf/
http://opensource.org/

Installing Python Modules, Release 2.7.10

. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or Or-

ganization (“Licensee”) accessing and otherwise using Python 2.7.10 software in source or binary form and its
associated documentation.

. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,

royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.7.10 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2015 Python Software
Foundation; All Rights Reserved” are retained in Python 2.7.10 alone or in any derivative version prepared by
Licensee.

. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.7.10 or any part

thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 2.7.10.

. PSF is making Python 2.7.10 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESENTA-

TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 2.7.10 WILL
NOT INFRINGE ANY THIRD PARTY RIGHTS.

. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.10 FOR ANY

INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.10, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint

venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.

. By copying, installing or otherwise using Python 2.7.10, Licensee agrees to be bound by the terms and conditions

of this License Agreement.
BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,

Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee

a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-

SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR

ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

22

Appendix C. History and License

Installing Python Modules, Release 2.7.10

. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-

fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on that web page.

. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions

of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an office

at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (‘“Licensee”)
accessing and otherwise using Python 1.6.1 software in source or binary form and its associated documentation.

. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclusive,

royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided, however, that
CNRTI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyright © 1995-2001 Corporation for
National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement, Licensee may substitute the
following text (omitting the quotes): “Python 1.6.1 is made available subject to the terms and conditions in
CNRTI’s License Agreement. This Agreement together with Python 1.6.1 may be located on the Internet using
the following unique, persistent identifier (known as a handle): 1895.22/1013. This Agreement may also be
obtained from a proxy server on the Internet using the following URL: http://hdl.handle.net/1895.22/1013.”

. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part thereof,

and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

This License Agreement will automatically terminate upon a material breach of its terms and conditions.

This License Agreement shall be governed by the federal intellectual property law of the United States, including
without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply, by the
law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstanding the
foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable material that
was previously distributed under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or with respect to Paragraphs 4, 5,
and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between CNRI and Licensee. This License Agreement does not grant
permission to use CNRI trademarks or trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python 1.6.1,
Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT

C.2.

Terms and conditions for accessing or otherwise using Python 23

http://www.pythonlabs.com/logos.html
http://hdl.handle.net/1895.22/1013

Installing Python Modules, Release 2.7.10

CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2
Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated
in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-
mat/MT/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

24 Appendix C. History and License

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Installing Python Modules, Release 2.7.10

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate
source files from the WIDE Project, http:/www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS "~ "AS IS'' AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE

FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpect 1 module includes the following notice:

/ Copyright (c) 1996. \

C.3. Licenses and Acknowledgements for Incorporated Software 25

http://www.wide.ad.jp/

Installing Python Modules, Release 2.7.10

The Regents of the University of California.
All rights reserved.

Permission to use, copy, modify, and distribute this software for
any purpose without fee is hereby granted, provided that this en-
tire notice is included in all copies of any software which is or
includes a copy or modification of this software and in all
copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence
Livermore National Laboratory under contract no. W-7405-ENG-48
between the U.S. Department of Energy and The Regents of the
University of California for the operation of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor the University of California nor any of their em-
ployees, makes any warranty, express or implied, or assumes any
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its wuse would not infringe
privately-owned rights. Reference herein to any specific commer-—
cial products, ©process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University
of California, and shall not be used for advertising or product
\ endorsement purposes. /

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

26 Appendix C. History and License

Installing Python Modules, Release 2.7.10

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).
This code implements the MD5 Algorithm defined in RFC 1321, whose

text is available at
http://www.ietf.org/rfc/rfcl321.txt

The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include

any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order) :

2002-04-13 1lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

1999-11-04 1lpd Edited comments slightly for automatic TOC extraction.
1999-10-18 1lpd Fixed typo in header comment (ansi2knr rather than md5);

added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.
1999-05-03 1lpd Original wversion.

C.3.5 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software

27

Installing Python Modules, Release 2.7.10

C.3.6 Cookie management

The Cookie module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.7 Execution tracing

The t race module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,

28 Appendix C. History and License

Installing Python Modules, Release 2.7.10

Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.8 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLTED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.9 XML Remote Procedure Calls

The xm1rpclib module contains the following notice:

The XML-RPC client interface 1is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

C.3. Licenses and Acknowledgements for Incorporated Software

29

Installing Python Modules, Release 2.7.10

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.10 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.11 Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "~ "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

30 Appendix C. History and License

Installing Python Modules, Release 2.7.10

ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.12 strtod and dtoa

The file Python/dtoa. c, which supplies C functions dtoa and strtod for conversion of C doubles to and from
strings, is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/.
The original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**
The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*

*

*

*

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
* 1s included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.
*
*
*
*
*
*
*

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

**/

C.3.13 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available
by the operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of the
OpenSSL libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

C.3. Licenses and Acknowledgements for Incorporated Software 31

http://www.netlib.org/fp/

Installing Python Modules, Release 2.7.10

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eayl@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

E O S . T T I R O . . . S NS S S S S T S S . . . T R R N L S S S S S S NS N .

Original SSLeay License

32 Appendix C. History and License

Installing Python Modules, Release 2.7.10

L I S R S R . A N T S S . S T I S R e S S S S S S N N .

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not Jjust the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or

C.3. Licenses and Acknowledgements for Incorporated Software 33

Installing Python Modules, Release 2.7.10

* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence

* [including the GNU Public Licence.]

*/

C.3.14 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.15 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
——with-system—-1libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the

‘" Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

34 Appendix C. History and License

Installing Python Modules, Release 2.7.10

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

The z11ib extension is built using an included copy of the zlib sources if the zlib version found on the system is too
old to be used for the build:

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3. Licenses and Acknowledgements for Incorporated Software 35

Installing Python Modules, Release 2.7.10

36

Appendix C. History and License

APPENDIX
D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2015 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

37

Installing Python Modules, Release 2.7.10

38

Appendix D. Copyright

Symbols

o 11

_ future__, 13
__slots__, 18
>>>, 11

2to3, 11

A

abstract base class, 11
argument, 11
attribute, 11

B

BDFL, 11
bytecode, 12
bytes-like object, 12

C

class, 12

classic class, 12
coercion, 12
complex number, 12
context manager, 12
CPython, 12

D

decorator, 12
descriptor, 13
dictionary, 13
docstring, 13
duck-typing, 13

E

EAFP, 13
expression, 13
extension module, 13

F

file object, 13
file-like object, 13
finder, 13

floor division, 13

INDEX

function, 13

G

garbage collection, 14
generator, 14, 14

generator expression, 14, 14
GIL, 14

global interpreter lock, 14

H

hashable, 14

IDLE, 14
immutable, 14
importer, 15
importing, 15
integer division, 14
interactive, 15
interpreted, 15
iterable, 15
iterator, 15

K

key function, 15
keyword argument, 15

L

lambda, 15

LBYL, 15

list, 16

list comprehension, 16
loader, 16

M

mapping, 16

metaclass, 16

method, 16

method resolution order, 16
module, 16

MRO, 16

mutable, 16

39

Installing Python Modules, Release 2.7.10

N

named tuple, 16
namespace, 16
nested scope, 17
new-style class, 17

O

object, 17

P

package, 17

parameter, 17

positional argument, 17

Python 3000, 17

Python Enhancement Proposals
PEP 238, 13

PEP 278, 18
PEP 302, 13, 16
PEP 3116, 18
PEP 343, 12

Pythonic, 17

R

reference count, 18

S

sequence, 18

slice, 18

special method, 18
statement, 18
struct sequence, 18

T

triple-quoted string, 18
type, 18

U

universal newlines, 18

V

view, 18
virtual environment, 18
virtual machine, 18

Z

Zen of Python, 18

40

Index

	Key terms
	Basic usage
	How do I ...?
	... install pip in versions of Python prior to Python 2.7.9?
	... install packages just for the current user?
	... install scientific Python packages?
	... work with multiple versions of Python installed in parallel?

	Common installation issues
	Installing into the system Python on Linux
	Installing binary extensions

	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Index

