Porting Extension Modules to Python 3

Release 2.7.10

Guido van Rossum
and the Python development team

June 01, 2015

Python Software Foundation
Email: docs@python.org

Contents
1 Conditional compilation 1
2 Changes to Object APIs 2
2.1 str/funicode Unification i e e e e e e e e e e e e 2
2.2 long/int Unification o 0 i e e e e e e e e e e e e e e e e 3
3 Module initialization and state 3
4 CObject replaced with Capsule 4
5 Other options 8
Index 9

author Benjamin Peterson

Abstract

Although changing the C-API was not one of Python 3’s objectives, the many Python-level changes made leaving
Python 2’s API intact impossible. In fact, some changes such as int () and long () unification are more
obvious on the C level. This document endeavors to document incompatibilities and how they can be worked
around.

1 Conditional compilation

The easiest way to compile only some code for Python 3 is to check if PY_MAJOR_VERSION is greater than or equal
to 3.

#1f PY MAJOR _VERSION >= 3
#define IS PY3K
#endif

API functions that are not present can be aliased to their equivalents within conditional blocks.

2 Changes to Object APIs

Python 3 merged together some types with similar functions while cleanly separating others.

2.1 str/unicode Unification

Python 3’s str () type is equivalent to Python 2’s unicode () ; the C functions are called PyUnicode_ * for both.
The old 8-bit string type has become bytes (), with C functions called PyBytes_ . Python 2.6 and later provide a
compatibility header, bytesobject . h, mapping PyBytes names to Py St ring ones. For best compatibility with
Python 3, PyUnicode should be used for textual data and PyBytes for binary data. It’s also important to remember
that PyBytes and PyUnicode in Python 3 are not interchangeable like Py St ring and PyUnicode are in Python
2. The following example shows best practices with regards to PyUnicode, PyString, and PyBytes.

#include "stdlib.h"
#include "Python.h"
#include "bytesobject.h"

/* text example */

static PyObject =

say_hello (PyObject =xself, PyObject =*args) {
PyObject #name, =xresult;

if (!PyArg_ParseTuple (args, "U:say_hello", &name))
return NULL;

result = PyUnicode_FromFormat ("Hello, %$S!", name);
return result;

/+* just a forward */
static char % do_encode (PyObject x);

/* bytes example #*/

static PyObject =

encode_object (PyObject =xself, PyObject xargs) {
char xencoded;
PyObject +*result, =*myobij;

if (!PyArg_ParseTuple (args, "O:encode_object", &myobij))
return NULL;

encoded = do_encode (myobij) ;
if (encoded == NULL)
return NULL;
result = PyBytes_FromString(encoded);
free (encoded) ;

return result;

2.2 long/int Unification

Python 3 has only one integer type, int (). But it actually corresponds to Python 2’s 1ong () type—the int () type
used in Python 2 was removed. In the C-API, PyInt_ * functions are replaced by their PyLong_* equivalents.

3 Module initialization and state

Python 3 has a revamped extension module initialization system. (See PEP 3121.) Instead of storing module state in
globals, they should be stored in an interpreter specific structure. Creating modules that act correctly in both Python 2
and Python 3 is tricky. The following simple example demonstrates how.

#include "Python.h"

struct module_state {
PyObject *error;
}i

#1f PY MAJOR _VERSION >= 3

#define GETSTATE (m) ((struct module_statex)PyModule_ GetState (m))
#else

#define GETSTATE (m) (&_state)

static struct module_state _state;

#endif

static PyObject =

error_out (PyObject xm) {
struct module_state xst = GETSTATE (m) ;
PyErr_SetString(st->error, "something bad happened");
return NULL;

static PyMethodDef myextension_methods[] = {
{"error_out", (PyCFunction)error_out, METH_NOARGS, NULL},
{NULL, NULL}

}i

#if PY MAJOR VERSION >= 3

static int myextension_traverse (PyObject »*m, visitproc visit, wvoid xarg) {
Py_VISIT(GETSTATE (m) —>error);
return 0O;

static int myextension_clear (PyObject =m) {
Py_CLEAR (GETSTATE (m) —>error) ;
return 0O;

http://www.python.org/dev/peps/pep-3121

static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"myextension",
NULL,
sizeof (struct module_state),
myextension_methods,
NULL,
myextension_traverse,
myextension_clear,
NULL

}i

#define INITERROR return NULL

PyObject =
PyInit_myextension (void)

#else
#define INITERROR return

void
initmyextension (void)
#endif
{
#if PY MAJOR _VERSION >= 3
PyObject smodule = PyModule_Create (&moduledef);

#else

PyObject xmodule = Py_InitModule ("myextension", myextension_methods);
#endif

if (module == NULL)

INITERROR;
struct module_state *st = GETSTATE (module) ;

st->error = PyErr_NewException ("myextension.Error", NULL, NULL);

if (st->error == NULL) {
Py_DECREF (module) ;
INITERROR;

#1f PY MAJOR _VERSION >= 3
return module;

#endif

}

4 CObject replaced with Capsule

The Capsule object was introduced in Python 3.1 and 2.7 to replace CObject. CObjects were useful, but the
CObject API was problematic: it didn’t permit distinguishing between valid CObjects, which allowed mismatched
CObjects to crash the interpreter, and some of its APIs relied on undefined behavior in C. (For further reading on the
rationale behind Capsules, please see issue 5630.)

If you’re currently using CObjects, and you want to migrate to 3.1 or newer, you’ll need to switch to Capsules.

https://bugs.python.org/issue5630

CObject was deprecated in 3.1 and 2.7 and completely removed in Python 3.2. If you only support 2.7, or 3.1 and
above, you can simply switch to Capsule. If you need to support Python 3.0, or versions of Python earlier than
2.7, you’ll have to support both CObjects and Capsules. (Note that Python 3.0 is no longer supported, and it is not
recommended for production use.)

The following example header file capsulethunk.h may solve the problem for you. Simply write your code
against the Capsule API and include this header file after Python . h. Your code will automatically use Capsules
in versions of Python with Capsules, and switch to CObjects when Capsules are unavailable.

capsulethunk.h simulates Capsules using CObjects. However, COb ject provides no place to store the capsule’s
“name”. As a result the simulated Capsule objects created by capsulethunk.h behave slightly differently from
real Capsules. Specifically:

* The name parameter passed in to PyCapsule_New () is ignored.

* The name parameter passed in to PyCapsule_IsValid () and PyCapsule_GetPointer () isignored,
and no error checking of the name is performed.

* PyCapsule_GetName () always returns NULL.

* PyCapsule_SetName () always raises an exception and returns failure. (Since there’s no way to store a
name in a CObject, noisy failure of PyCapsule_SetName () was deemed preferable to silent failure here. If
this is inconvenient, feel free to modify your local copy as you see fit.)

You can find capsulethunk.h in the Python source distribution as Doc/includes/capsulethunk.h. We also include
it here for your convenience:

#ifndef __ CAPSULETHUNK_ H
#define __ CAPSULETHUNK_H

#if ((PY_VERSION_HEX < 0x02070000) \
|| ((PY_VERSION_HEX >= 0x03000000) \
&& (PY _VERSION_HEX < 0x03010000)))

#define ___PyCapsule_GetField(capsule, field, default_value) \
(PyCapsule_CheckExact (capsule) \
? (((PyCObject =+)capsule)->field) \
(default_value) \

#define _ PyCapsule_SetField (capsule, field, value) \
(PyCapsule_CheckExact (capsule) \
? (((PyCObject x)capsule)->field = value), 1 \
0\

#define PyCapsule Type PyCObject_Type

#define PyCapsule_CheckExact (capsule) (PyCObject_Check (capsule))
#define PyCapsule_IsValid (capsule, name) (PyCObject_Check (capsule))

#define PyCapsule_New (pointer, name, destructor) |\
(PyCObject_FromVoidPtr (pointer, destructor))

#define PyCapsule_GetPointer (capsule, name) \

https://hg.python.org/cpython/file/2.7/Doc/includes/capsulethunk.h

(PyCOb ject_AsVoidPtr (capsule))

/* Don't call PyCObject_SetPointer here, it fails if there's a destructor */
#define PyCapsule_SetPointer (capsule, pointer) \
__PyCapsule_SetField(capsule, cobject, pointer)

#define PyCapsule_GetDestructor (capsule) \
__ _PyCapsule GetField(capsule, destructor)

#define PyCapsule_SetDestructor (capsule, dtor) |\
__ PyCapsule SetField(capsule, destructor, dtor)

/%
* Sorry, there's simply no place
* to store a Capsule "name" in a CObject.
*/

#define PyCapsule_GetName (capsule) NULL

static int
PyCapsule_SetName (PyObject +capsule, const char xunused)
{
unused = unused;
PyErr_SetString (PyExc_NotImplementedError,
"can't use PyCapsule_SetName with CObjects");
return 1;

#define PyCapsule_GetContext (capsule) \
_ _PyCapsule_ GetField(capsule, descr)

#define PyCapsule_SetContext (capsule, context) \
__PyCapsule_ SetField(capsule, descr, context)

static void =«
PyCapsule_Import (const char sname, int no_block)
{
PyObject xobject = NULL;
void *return_value = NULL;
char *trace;
size_t name_length = (strlen(name) + 1) % sizeof (char);
char *name_dup = (char x)PyMem MALLOC (name_length);

if (!name_dup) {
return NULL;
memcpy (name_dup, name, name_length);

trace = name_dup;

while (trace) {

char +«dot = strchr(trace, '.'");
if (dot) {
xdot++ = '"\0';
}
if (object == NULL) {

if (no_block) {
object = PyImport_ImportModuleNoBlock (trace);
} else {
object = PyImport_ImportModule (trace);
if (!object) {
PyErr_Format (PyExc_ImportError,
"PyCapsule_Import could not
"import module \"%s\"", trace);

n

}
} else {
PyObject xobject2 = PyObject_GetAttrString(object,

Py_DECREF (object) ;
object = object2;
}
if (!object) {
goto EXIT;

trace = dot;

if (PyCObject_Check (object)) {

PyCObject *cobject = (PyCObject =x)object;
return_value = cobject->cobject;
} else {

PyErr_Format (PyExc_AttributeError,
"PyCapsule_Import \"%s\" is not valid",
name) ;

EXIT:
Py_XDECREF (object) ;
if (name_dup) {
PyMem_FREE (name_dup) ;
}

return return_value;

#endif /+ #if PY VERSION_HEX < 0x02070000 x/

#endif /+ ___CAPSULETHUNK_H x/

trace);

5 Other options

If you are writing a new extension module, you might consider Cython. It translates a Python-like language to C. The
extension modules it creates are compatible with Python 3 and Python 2.

http://cython.org/

Index
P

Python Enhancement Proposals
PEP 3121, 3

	Conditional compilation
	Changes to Object APIs
	str/unicode Unification
	long/int Unification

	Module initialization and state
	CObject replaced with Capsule
	Other options
	Index

