
What’s New in Python
Release 2.7.10

A. M. Kuchling

June 01, 2015

Python Software Foundation
Email: docs@python.org

Contents

1 The Future for Python 2.x 2

2 Changes to the Handling of Deprecation Warnings 3

3 Python 3.1 Features 3

4 PEP 372: Adding an Ordered Dictionary to collections 4

5 PEP 378: Format Specifier for Thousands Separator 5

6 PEP 389: The argparse Module for Parsing Command Lines 6

7 PEP 391: Dictionary-Based Configuration For Logging 7

8 PEP 3106: Dictionary Views 9

9 PEP 3137: The memoryview Object 10

10 Other Language Changes 10
10.1 Interpreter Changes . 13
10.2 Optimizations . 13

11 New and Improved Modules 14
11.1 New module: importlib . 22
11.2 New module: sysconfig . 23
11.3 ttk: Themed Widgets for Tk . 23
11.4 Updated module: unittest . 24
11.5 Updated module: ElementTree 1.3 . 26

12 Build and C API Changes 27
12.1 Capsules . 29
12.2 Port-Specific Changes: Windows . 29
12.3 Port-Specific Changes: Mac OS X . 30
12.4 Port-Specific Changes: FreeBSD . 30

13 Other Changes and Fixes 30

14 Porting to Python 2.7 30

15 New Features Added to Python 2.7 Maintenance Releases 32
15.1 PEP 434: IDLE Enhancement Exception for All Branches . 32
15.2 PEP 466: Network Security Enhancements for Python 2.7 . 32
15.3 PEP 477: Backport ensurepip (PEP 453) to Python 2.7 . 33

Bootstrapping pip By Default . 33
Documentation Changes . 33

15.4 PEP 476: Enabling certificate verification by default for stdlib http clients 34

16 Acknowledgements 34

Index 35

Author A.M. Kuchling (amk at amk.ca)

This article explains the new features in Python 2.7. Python 2.7 was released on July 3, 2010.

Numeric handling has been improved in many ways, for both floating-point numbers and for the Decimal class.
There are some useful additions to the standard library, such as a greatly enhanced unittest module, the
argparse module for parsing command-line options, convenient OrderedDict and Counter classes in the
collections module, and many other improvements.

Python 2.7 is planned to be the last of the 2.x releases, so we worked on making it a good release for the long term. To
help with porting to Python 3, several new features from the Python 3.x series have been included in 2.7.

This article doesn’t attempt to provide a complete specification of the new features, but instead provides a convenient
overview. For full details, you should refer to the documentation for Python 2.7 at https://docs.python.org. If you want
to understand the rationale for the design and implementation, refer to the PEP for a particular new feature or the issue
on https://bugs.python.org in which a change was discussed. Whenever possible, “What’s New in Python” links to the
bug/patch item for each change.

1 The Future for Python 2.x

Python 2.7 is the last major release in the 2.x series, as the Python maintainers have shifted the focus of their new
feature development efforts to the Python 3.x series. This means that while Python 2 continues to receive bug fixes,
and to be updated to build correctly on new hardware and versions of supported operated systems, there will be no
new full feature releases for the language or standard library.

However, while there is a large common subset between Python 2.7 and Python 3, and many of the changes involved in
migrating to that common subset, or directly to Python 3, can be safely automated, some other changes (notably those
associated with Unicode handling) may require careful consideration, and preferably robust automated regression test
suites, to migrate effectively.

This means that Python 2.7 will remain in place for a long time, providing a stable and supported base platform for
production systems that have not yet been ported to Python 3. The full expected lifecycle of the Python 2.7 series is
detailed in PEP 373.

Some key consequences of the long-term significance of 2.7 are:

• As noted above, the 2.7 release has a much longer period of maintenance when compared to earlier 2.x versions.
Python 2.7 is currently expected to remain supported by the core development team (receiving security updates
and other bug fixes) until at least 2020 (10 years after its initial release, compared to the more typical support
period of 18-24 months).

https://docs.python.org
https://bugs.python.org
http://www.python.org/dev/peps/pep-0373

• As the Python 2.7 standard library ages, making effective use of the Python Package Index (either directly or via
a redistributor) becomes more important for Python 2 users. In addition to a wide variety of third party packages
for various tasks, the available packages include backports of new modules and features from the Python 3
standard library that are compatible with Python 2, as well as various tools and libraries that can make it easier
to migrate to Python 3. The Python Packaging User Guide provides guidance on downloading and installing
software from the Python Package Index.

• While the preferred approach to enhancing Python 2 is now the publication of new packages on the Python
Package Index, this approach doesn’t necessarily work in all cases, especially those related to network security.
In exceptional cases that cannot be handled adequately by publishing new or updated packages on PyPI, the
Python Enhancement Proposal process may be used to make the case for adding new features directly to the
Python 2 standard library. Any such additions, and the maintenance releases where they were added, will be
noted in the New Features Added to Python 2.7 Maintenance Releases section below.

For projects wishing to migrate from Python 2 to Python 3, or for library and framework developers wishing to support
users on both Python 2 and Python 3, there are a variety of tools and guides available to help decide on a suitable
approach and manage some of the technical details involved. The recommended starting point is the pyporting-howto
HOWTO guide.

2 Changes to the Handling of Deprecation Warnings

For Python 2.7, a policy decision was made to silence warnings only of interest to developers by default.
DeprecationWarning and its descendants are now ignored unless otherwise requested, preventing users from
seeing warnings triggered by an application. This change was also made in the branch that became Python 3.2. (Dis-
cussed on stdlib-sig and carried out in issue 7319.)

In previous releases, DeprecationWarning messages were enabled by default, providing Python developers with
a clear indication of where their code may break in a future major version of Python.

However, there are increasingly many users of Python-based applications who are not directly involved in the devel-
opment of those applications. DeprecationWarning messages are irrelevant to such users, making them worry
about an application that’s actually working correctly and burdening application developers with responding to these
concerns.

You can re-enable display of DeprecationWarning messages by running Python with the -Wdefault (short
form: -Wd) switch, or by setting the PYTHONWARNINGS environment variable to "default" (or "d") before
running Python. Python code can also re-enable them by calling warnings.simplefilter(’default’).

The unittest module also automatically reenables deprecation warnings when running tests.

3 Python 3.1 Features

Much as Python 2.6 incorporated features from Python 3.0, version 2.7 incorporates some of the new features in
Python 3.1. The 2.x series continues to provide tools for migrating to the 3.x series.

A partial list of 3.1 features that were backported to 2.7:

• The syntax for set literals ({1,2,3} is a mutable set).

• Dictionary and set comprehensions ({i: i*2 for i in range(3)}).

• Multiple context managers in a single with statement.

• A new version of the io library, rewritten in C for performance.

• The ordered-dictionary type described in PEP 372: Adding an Ordered Dictionary to collections.

https://packaging.python.org
https://bugs.python.org/issue7319

• The new "," format specifier described in PEP 378: Format Specifier for Thousands Separator.

• The memoryview object.

• A small subset of the importlib module, described below.

• The repr() of a float x is shorter in many cases: it’s now based on the shortest decimal string that’s guaranteed
to round back to x. As in previous versions of Python, it’s guaranteed that float(repr(x)) recovers x.

• Float-to-string and string-to-float conversions are correctly rounded. The round() function is also now cor-
rectly rounded.

• The PyCapsule type, used to provide a C API for extension modules.

• The PyLong_AsLongAndOverflow() C API function.

Other new Python3-mode warnings include:

• operator.isCallable() and operator.sequenceIncludes(), which are not supported in 3.x,
now trigger warnings.

• The -3 switch now automatically enables the -Qwarn switch that causes warnings about using classic division
with integers and long integers.

4 PEP 372: Adding an Ordered Dictionary to collections

Regular Python dictionaries iterate over key/value pairs in arbitrary order. Over the years, a number of authors have
written alternative implementations that remember the order that the keys were originally inserted. Based on the
experiences from those implementations, 2.7 introduces a new OrderedDict class in the collections module.

The OrderedDict API provides the same interface as regular dictionaries but iterates over keys and values in a
guaranteed order depending on when a key was first inserted:

>>> from collections import OrderedDict
>>> d = OrderedDict([('first', 1),
... ('second', 2),
... ('third', 3)])
>>> d.items()
[('first', 1), ('second', 2), ('third', 3)]

If a new entry overwrites an existing entry, the original insertion position is left unchanged:

>>> d['second'] = 4
>>> d.items()
[('first', 1), ('second', 4), ('third', 3)]

Deleting an entry and reinserting it will move it to the end:

>>> del d['second']
>>> d['second'] = 5
>>> d.items()
[('first', 1), ('third', 3), ('second', 5)]

The popitem() method has an optional last argument that defaults to True. If last is True, the most recently added
key is returned and removed; if it’s False, the oldest key is selected:

>>> od = OrderedDict([(x,0) for x in range(20)])
>>> od.popitem()
(19, 0)
>>> od.popitem()
(18, 0)

>>> od.popitem(last=False)
(0, 0)
>>> od.popitem(last=False)
(1, 0)

Comparing two ordered dictionaries checks both the keys and values, and requires that the insertion order was the
same:

>>> od1 = OrderedDict([('first', 1),
... ('second', 2),
... ('third', 3)])
>>> od2 = OrderedDict([('third', 3),
... ('first', 1),
... ('second', 2)])
>>> od1 == od2
False
>>> # Move 'third' key to the end
>>> del od2['third']; od2['third'] = 3
>>> od1 == od2
True

Comparing an OrderedDict with a regular dictionary ignores the insertion order and just compares the keys and
values.

How does the OrderedDictwork? It maintains a doubly-linked list of keys, appending new keys to the list as they’re
inserted. A secondary dictionary maps keys to their corresponding list node, so deletion doesn’t have to traverse the
entire linked list and therefore remains O(1).

The standard library now supports use of ordered dictionaries in several modules.

• The ConfigParser module uses them by default, meaning that configuration files can now be read, modified,
and then written back in their original order.

• The _asdict() method for collections.namedtuple() now returns an ordered dictionary with the
values appearing in the same order as the underlying tuple indices.

• The json module’s JSONDecoder class constructor was extended with an object_pairs_hook parameter to
allow OrderedDict instances to be built by the decoder. Support was also added for third-party tools like
PyYAML.

See also:

PEP 372 - Adding an ordered dictionary to collections PEP written by Armin Ronacher and Raymond Hettinger;
implemented by Raymond Hettinger.

5 PEP 378: Format Specifier for Thousands Separator

To make program output more readable, it can be useful to add separators to large numbers, rendering them as
18,446,744,073,709,551,616 instead of 18446744073709551616.

The fully general solution for doing this is the locale module, which can use different separators (”,” in North
America, ”.” in Europe) and different grouping sizes, but locale is complicated to use and unsuitable for multi-
threaded applications where different threads are producing output for different locales.

Therefore, a simple comma-grouping mechanism has been added to the mini-language used by the str.format()
method. When formatting a floating-point number, simply include a comma between the width and the precision:

>>> '{:20,.2f}'.format(18446744073709551616.0)
'18,446,744,073,709,551,616.00'

http://pyyaml.org/
http://www.python.org/dev/peps/pep-0372

When formatting an integer, include the comma after the width:

>>> '{:20,d}'.format(18446744073709551616)
'18,446,744,073,709,551,616'

This mechanism is not adaptable at all; commas are always used as the separator and the grouping is always into
three-digit groups. The comma-formatting mechanism isn’t as general as the locale module, but it’s easier to use.

See also:

PEP 378 - Format Specifier for Thousands Separator PEP written by Raymond Hettinger; implemented by Eric
Smith.

6 PEP 389: The argparse Module for Parsing Command Lines

The argparse module for parsing command-line arguments was added as a more powerful replacement for the
optparse module.

This means Python now supports three different modules for parsing command-line arguments: getopt, optparse,
and argparse. The getopt module closely resembles the C library’s getopt() function, so it remains useful
if you’re writing a Python prototype that will eventually be rewritten in C. optparse becomes redundant, but there
are no plans to remove it because there are many scripts still using it, and there’s no automated way to update these
scripts. (Making the argparse API consistent with optparse‘s interface was discussed but rejected as too messy
and difficult.)

In short, if you’re writing a new script and don’t need to worry about compatibility with earlier versions of Python,
use argparse instead of optparse.

Here’s an example:

import argparse

parser = argparse.ArgumentParser(description='Command-line example.')

Add optional switches
parser.add_argument('-v', action='store_true', dest='is_verbose',

help='produce verbose output')
parser.add_argument('-o', action='store', dest='output',

metavar='FILE',
help='direct output to FILE instead of stdout')

parser.add_argument('-C', action='store', type=int, dest='context',
metavar='NUM', default=0,
help='display NUM lines of added context')

Allow any number of additional arguments.
parser.add_argument(nargs='*', action='store', dest='inputs',

help='input filenames (default is stdin)')

args = parser.parse_args()
print args.__dict__

Unless you override it, -h and --help switches are automatically added, and produce neatly formatted output:

-> ./python.exe argparse-example.py --help
usage: argparse-example.py [-h] [-v] [-o FILE] [-C NUM] [inputs [inputs ...]]

Command-line example.

http://www.python.org/dev/peps/pep-0378

positional arguments:
inputs input filenames (default is stdin)

optional arguments:
-h, --help show this help message and exit
-v produce verbose output
-o FILE direct output to FILE instead of stdout
-C NUM display NUM lines of added context

As with optparse, the command-line switches and arguments are returned as an object with attributes named by the
dest parameters:

-> ./python.exe argparse-example.py -v
{'output': None,
'is_verbose': True,
'context': 0,
'inputs': []}

-> ./python.exe argparse-example.py -v -o /tmp/output -C 4 file1 file2
{'output': '/tmp/output',
'is_verbose': True,
'context': 4,
'inputs': ['file1', 'file2']}

argparse has much fancier validation than optparse; you can specify an exact number of arguments as an integer,
0 or more arguments by passing ’*’, 1 or more by passing ’+’, or an optional argument with ’?’. A top-level
parser can contain sub-parsers to define subcommands that have different sets of switches, as in svn commit, svn
checkout, etc. You can specify an argument’s type as FileType, which will automatically open files for you and
understands that ’-’ means standard input or output.

See also:

argparse documentation The documentation page of the argparse module.

argparse-from-optparse Part of the Python documentation, describing how to convert code that uses optparse.

PEP 389 - argparse - New Command Line Parsing Module PEP written and implemented by Steven Bethard.

7 PEP 391: Dictionary-Based Configuration For Logging

The logging module is very flexible; applications can define a tree of logging subsystems, and each logger in this
tree can filter out certain messages, format them differently, and direct messages to a varying number of handlers.

All this flexibility can require a lot of configuration. You can write Python statements to create objects and set their
properties, but a complex set-up requires verbose but boring code. logging also supports a fileConfig()
function that parses a file, but the file format doesn’t support configuring filters, and it’s messier to generate program-
matically.

Python 2.7 adds a dictConfig() function that uses a dictionary to configure logging. There are many ways to
produce a dictionary from different sources: construct one with code; parse a file containing JSON; or use a YAML
parsing library if one is installed. For more information see logging-config-api.

The following example configures two loggers, the root logger and a logger named “network”. Messages sent to the
root logger will be sent to the system log using the syslog protocol, and messages to the “network” logger will be
written to a network.log file that will be rotated once the log reaches 1MB.

http://www.python.org/dev/peps/pep-0389

import logging
import logging.config

configdict = {
'version': 1, # Configuration schema in use; must be 1 for now
'formatters': {

'standard': {
'format': ('%(asctime)s %(name)-15s '

'%(levelname)-8s %(message)s')}},

'handlers': {'netlog': {'backupCount': 10,
'class': 'logging.handlers.RotatingFileHandler',
'filename': '/logs/network.log',
'formatter': 'standard',
'level': 'INFO',
'maxBytes': 1000000},

'syslog': {'class': 'logging.handlers.SysLogHandler',
'formatter': 'standard',
'level': 'ERROR'}},

Specify all the subordinate loggers
'loggers': {

'network': {
'handlers': ['netlog']

}
},
Specify properties of the root logger
'root': {

'handlers': ['syslog']
},

}

Set up configuration
logging.config.dictConfig(configdict)

As an example, log two error messages
logger = logging.getLogger('/')
logger.error('Database not found')

netlogger = logging.getLogger('network')
netlogger.error('Connection failed')

Three smaller enhancements to the logging module, all implemented by Vinay Sajip, are:

• The SysLogHandler class now supports syslogging over TCP. The constructor has a socktype parameter
giving the type of socket to use, either socket.SOCK_DGRAM for UDP or socket.SOCK_STREAM for
TCP. The default protocol remains UDP.

• Logger instances gained a getChild() method that retrieves a descendant logger using a rela-
tive path. For example, once you retrieve a logger by doing log = getLogger(’app’), calling
log.getChild(’network.listen’) is equivalent to getLogger(’app.network.listen’).

• The LoggerAdapter class gained a isEnabledFor() method that takes a level and returns whether the
underlying logger would process a message of that level of importance.

See also:

PEP 391 - Dictionary-Based Configuration For Logging PEP written and implemented by Vinay Sajip.

8 PEP 3106: Dictionary Views

The dictionary methods keys(), values(), and items() are different in Python 3.x. They return an object called
a view instead of a fully materialized list.

It’s not possible to change the return values of keys(), values(), and items() in Python 2.7 because too much
code would break. Instead the 3.x versions were added under the new names viewkeys(), viewvalues(), and
viewitems().

>>> d = dict((i*10, chr(65+i)) for i in range(26))
>>> d
{0: 'A', 130: 'N', 10: 'B', 140: 'O', 20: ..., 250: 'Z'}
>>> d.viewkeys()
dict_keys([0, 130, 10, 140, 20, 150, 30, ..., 250])

Views can be iterated over, but the key and item views also behave like sets. The & operator performs intersection, and
| performs a union:

>>> d1 = dict((i*10, chr(65+i)) for i in range(26))
>>> d2 = dict((i**.5, i) for i in range(1000))
>>> d1.viewkeys() & d2.viewkeys()
set([0.0, 10.0, 20.0, 30.0])
>>> d1.viewkeys() | range(0, 30)
set([0, 1, 130, 3, 4, 5, 6, ..., 120, 250])

The view keeps track of the dictionary and its contents change as the dictionary is modified:

>>> vk = d.viewkeys()
>>> vk
dict_keys([0, 130, 10, ..., 250])
>>> d[260] = '&'
>>> vk
dict_keys([0, 130, 260, 10, ..., 250])

However, note that you can’t add or remove keys while you’re iterating over the view:

>>> for k in vk:
... d[k*2] = k
...
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
RuntimeError: dictionary changed size during iteration

You can use the view methods in Python 2.x code, and the 2to3 converter will change them to the standard keys(),
values(), and items() methods.

See also:

PEP 3106 - Revamping dict.keys(), .values() and .items() PEP written by Guido van Rossum. Backported to 2.7 by
Alexandre Vassalotti; issue 1967.

http://www.python.org/dev/peps/pep-0391
http://www.python.org/dev/peps/pep-3106
https://bugs.python.org/issue1967

9 PEP 3137: The memoryview Object

The memoryview object provides a view of another object’s memory content that matches the bytes type’s inter-
face.

>>> import string
>>> m = memoryview(string.letters)
>>> m
<memory at 0x37f850>
>>> len(m) # Returns length of underlying object
52
>>> m[0], m[25], m[26] # Indexing returns one byte
('a', 'z', 'A')
>>> m2 = m[0:26] # Slicing returns another memoryview
>>> m2
<memory at 0x37f080>

The content of the view can be converted to a string of bytes or a list of integers:

>>> m2.tobytes()
'abcdefghijklmnopqrstuvwxyz'
>>> m2.tolist()
[97, 98, 99, 100, 101, 102, 103, ... 121, 122]
>>>

memoryview objects allow modifying the underlying object if it’s a mutable object.

>>> m2[0] = 75
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: cannot modify read-only memory
>>> b = bytearray(string.letters) # Creating a mutable object
>>> b
bytearray(b'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ')
>>> mb = memoryview(b)
>>> mb[0] = '*' # Assign to view, changing the bytearray.
>>> b[0:5] # The bytearray has been changed.
bytearray(b'*bcde')
>>>

See also:

PEP 3137 - Immutable Bytes and Mutable Buffer PEP written by Guido van Rossum. Implemented by Travis
Oliphant, Antoine Pitrou and others. Backported to 2.7 by Antoine Pitrou; issue 2396.

10 Other Language Changes

Some smaller changes made to the core Python language are:

• The syntax for set literals has been backported from Python 3.x. Curly brackets are used to surround the contents
of the resulting mutable set; set literals are distinguished from dictionaries by not containing colons and values.
{} continues to represent an empty dictionary; use set() for an empty set.

>>> {1, 2, 3, 4, 5}
set([1, 2, 3, 4, 5])
>>> set() # empty set

http://www.python.org/dev/peps/pep-3137
https://bugs.python.org/issue2396

set([])
>>> {} # empty dict
{}

Backported by Alexandre Vassalotti; issue 2335.

• Dictionary and set comprehensions are another feature backported from 3.x, generalizing list/generator compre-
hensions to use the literal syntax for sets and dictionaries.

>>> {x: x*x for x in range(6)}
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}
>>> {('a'*x) for x in range(6)}
set(['', 'a', 'aa', 'aaa', 'aaaa', 'aaaaa'])

Backported by Alexandre Vassalotti; issue 2333.

• The with statement can now use multiple context managers in one statement. Context managers are processed
from left to right and each one is treated as beginning a new with statement. This means that:

with A() as a, B() as b:
... suite of statements ...

is equivalent to:

with A() as a:
with B() as b:

... suite of statements ...

The contextlib.nested() function provides a very similar function, so it’s no longer necessary and has
been deprecated.

(Proposed in https://codereview.appspot.com/53094; implemented by Georg Brandl.)

• Conversions between floating-point numbers and strings are now correctly rounded on most platforms. These
conversions occur in many different places: str() on floats and complex numbers; the float and complex
constructors; numeric formatting; serializing and deserializing floats and complex numbers using the marshal,
pickle and json modules; parsing of float and imaginary literals in Python code; and Decimal-to-float
conversion.

Related to this, the repr() of a floating-point number x now returns a result based on the shortest decimal
string that’s guaranteed to round back to x under correct rounding (with round-half-to-even rounding mode).
Previously it gave a string based on rounding x to 17 decimal digits.

The rounding library responsible for this improvement works on Windows and on Unix platforms using the gcc,
icc, or suncc compilers. There may be a small number of platforms where correct operation of this code cannot
be guaranteed, so the code is not used on such systems. You can find out which code is being used by checking
sys.float_repr_style, which will be short if the new code is in use and legacy if it isn’t.

Implemented by Eric Smith and Mark Dickinson, using David Gay’s dtoa.c library; issue 7117.

• Conversions from long integers and regular integers to floating point now round differently, returning the
floating-point number closest to the number. This doesn’t matter for small integers that can be converted ex-
actly, but for large numbers that will unavoidably lose precision, Python 2.7 now approximates more closely.
For example, Python 2.6 computed the following:

>>> n = 295147905179352891391
>>> float(n)
2.9514790517935283e+20
>>> n - long(float(n))
65535L

Python 2.7’s floating-point result is larger, but much closer to the true value:

https://bugs.python.org/issue2335
https://bugs.python.org/issue2333
https://codereview.appspot.com/53094
https://bugs.python.org/issue7117

>>> n = 295147905179352891391
>>> float(n)
2.9514790517935289e+20
>>> n - long(float(n))
-1L

(Implemented by Mark Dickinson; issue 3166.)

Integer division is also more accurate in its rounding behaviours. (Also implemented by Mark Dickinson; issue
1811.)

• Implicit coercion for complex numbers has been removed; the interpreter will no longer ever attempt to call a
__coerce__() method on complex objects. (Removed by Meador Inge and Mark Dickinson; issue 5211.)

• The str.format() method now supports automatic numbering of the replacement fields. This makes using
str.format() more closely resemble using %s formatting:

>>> '{}:{}:{}'.format(2009, 04, 'Sunday')
'2009:4:Sunday'
>>> '{}:{}:{day}'.format(2009, 4, day='Sunday')
'2009:4:Sunday'

The auto-numbering takes the fields from left to right, so the first {...} specifier will use the first argument to
str.format(), the next specifier will use the next argument, and so on. You can’t mix auto-numbering and
explicit numbering – either number all of your specifier fields or none of them – but you can mix auto-numbering
and named fields, as in the second example above. (Contributed by Eric Smith; issue 5237.)

Complex numbers now correctly support usage with format(), and default to being right-aligned. Specifying
a precision or comma-separation applies to both the real and imaginary parts of the number, but a specified field
width and alignment is applied to the whole of the resulting 1.5+3j output. (Contributed by Eric Smith; issue
1588 and issue 7988.)

The ‘F’ format code now always formats its output using uppercase characters, so it will now produce ‘INF’ and
‘NAN’. (Contributed by Eric Smith; issue 3382.)

A low-level change: the object.__format__() method now triggers a
PendingDeprecationWarning if it’s passed a format string, because the __format__() method for
object converts the object to a string representation and formats that. Previously the method silently applied
the format string to the string representation, but that could hide mistakes in Python code. If you’re supplying
formatting information such as an alignment or precision, presumably you’re expecting the formatting to be
applied in some object-specific way. (Fixed by Eric Smith; issue 7994.)

• The int() and long() types gained a bit_length method that returns the number of bits necessary to
represent its argument in binary:

>>> n = 37
>>> bin(n)
'0b100101'
>>> n.bit_length()
6
>>> n = 2**123-1
>>> n.bit_length()
123
>>> (n+1).bit_length()
124

(Contributed by Fredrik Johansson and Victor Stinner; issue 3439.)

• The import statement will no longer try an absolute import if a relative import (e.g. from .os import
sep) fails. This fixes a bug, but could possibly break certain import statements that were only working by

https://bugs.python.org/issue3166
https://bugs.python.org/issue1811
https://bugs.python.org/issue1811
https://bugs.python.org/issue5211
https://bugs.python.org/issue5237
https://bugs.python.org/issue1588
https://bugs.python.org/issue1588
https://bugs.python.org/issue7988
https://bugs.python.org/issue3382
https://bugs.python.org/issue7994
https://bugs.python.org/issue3439

accident. (Fixed by Meador Inge; issue 7902.)

• It’s now possible for a subclass of the built-in unicode type to override the __unicode__() method. (Im-
plemented by Victor Stinner; issue 1583863.)

• The bytearray type’s translate() method now accepts None as its first argument. (Fixed by Georg
Brandl; issue 4759.)

• When using @classmethod and @staticmethod to wrap methods as class or static methods, the wrapper
object now exposes the wrapped function as their __func__ attribute. (Contributed by Amaury Forgeot d’Arc,
after a suggestion by George Sakkis; issue 5982.)

• When a restricted set of attributes were set using __slots__, deleting an unset attribute would not raise
AttributeError as you would expect. Fixed by Benjamin Peterson; issue 7604.)

• Two new encodings are now supported: “cp720”, used primarily for Arabic text; and “cp858”, a variant of CP
850 that adds the euro symbol. (CP720 contributed by Alexander Belchenko and Amaury Forgeot d’Arc in issue
1616979; CP858 contributed by Tim Hatch in issue 8016.)

• The file object will now set the filename attribute on the IOError exception when trying to open a
directory on POSIX platforms (noted by Jan Kaliszewski; issue 4764), and now explicitly checks for and forbids
writing to read-only file objects instead of trusting the C library to catch and report the error (fixed by Stefan
Krah; issue 5677).

• The Python tokenizer now translates line endings itself, so the compile() built-in function now accepts code
using any line-ending convention. Additionally, it no longer requires that the code end in a newline.

• Extra parentheses in function definitions are illegal in Python 3.x, meaning that you get a syntax error from
def f((x)): pass. In Python3-warning mode, Python 2.7 will now warn about this odd usage. (Noted
by James Lingard; issue 7362.)

• It’s now possible to create weak references to old-style class objects. New-style classes were always weak-
referenceable. (Fixed by Antoine Pitrou; issue 8268.)

• When a module object is garbage-collected, the module’s dictionary is now only cleared if no one else is holding
a reference to the dictionary (issue 7140).

10.1 Interpreter Changes

A new environment variable, PYTHONWARNINGS, allows controlling warnings. It should be set to a string containing
warning settings, equivalent to those used with the -W switch, separated by commas. (Contributed by Brian Curtin;
issue 7301.)

For example, the following setting will print warnings every time they occur, but turn warnings from the Cookie
module into an error. (The exact syntax for setting an environment variable varies across operating systems and
shells.)

export PYTHONWARNINGS=all,error:::Cookie:0

10.2 Optimizations

Several performance enhancements have been added:

• A new opcode was added to perform the initial setup for with statements, looking up the __enter__() and
__exit__() methods. (Contributed by Benjamin Peterson.)

• The garbage collector now performs better for one common usage pattern: when many objects are being allo-
cated without deallocating any of them. This would previously take quadratic time for garbage collection, but
now the number of full garbage collections is reduced as the number of objects on the heap grows. The new

https://bugs.python.org/issue7902
https://bugs.python.org/issue1583863
https://bugs.python.org/issue4759
https://bugs.python.org/issue5982
https://bugs.python.org/issue7604
https://bugs.python.org/issue1616979
https://bugs.python.org/issue1616979
https://bugs.python.org/issue8016
https://bugs.python.org/issue4764
https://bugs.python.org/issue5677
https://bugs.python.org/issue7362
https://bugs.python.org/issue8268
https://bugs.python.org/issue7140
https://bugs.python.org/issue7301

logic only performs a full garbage collection pass when the middle generation has been collected 10 times and
when the number of survivor objects from the middle generation exceeds 10% of the number of objects in the
oldest generation. (Suggested by Martin von Löwis and implemented by Antoine Pitrou; issue 4074.)

• The garbage collector tries to avoid tracking simple containers which can’t be part of a cycle. In Python 2.7,
this is now true for tuples and dicts containing atomic types (such as ints, strings, etc.). Transitively, a dict
containing tuples of atomic types won’t be tracked either. This helps reduce the cost of each garbage collection
by decreasing the number of objects to be considered and traversed by the collector. (Contributed by Antoine
Pitrou; issue 4688.)

• Long integers are now stored internally either in base 2**15 or in base 2**30, the base being determined at
build time. Previously, they were always stored in base 2**15. Using base 2**30 gives significant performance
improvements on 64-bit machines, but benchmark results on 32-bit machines have been mixed. Therefore, the
default is to use base 2**30 on 64-bit machines and base 2**15 on 32-bit machines; on Unix, there’s a new
configure option --enable-big-digits that can be used to override this default.

Apart from the performance improvements this change should be invisible to end users, with one exception: for
testing and debugging purposes there’s a new structseq sys.long_info that provides information about the
internal format, giving the number of bits per digit and the size in bytes of the C type used to store each digit:

>>> import sys
>>> sys.long_info
sys.long_info(bits_per_digit=30, sizeof_digit=4)

(Contributed by Mark Dickinson; issue 4258.)

Another set of changes made long objects a few bytes smaller: 2 bytes smaller on 32-bit systems and 6 bytes on
64-bit. (Contributed by Mark Dickinson; issue 5260.)

• The division algorithm for long integers has been made faster by tightening the inner loop, doing shifts instead
of multiplications, and fixing an unnecessary extra iteration. Various benchmarks show speedups of between
50% and 150% for long integer divisions and modulo operations. (Contributed by Mark Dickinson; issue 5512.)
Bitwise operations are also significantly faster (initial patch by Gregory Smith; issue 1087418).

• The implementation of % checks for the left-side operand being a Python string and special-cases it; this results
in a 1-3% performance increase for applications that frequently use % with strings, such as templating libraries.
(Implemented by Collin Winter; issue 5176.)

• List comprehensions with an if condition are compiled into faster bytecode. (Patch by Antoine Pitrou, back-
ported to 2.7 by Jeffrey Yasskin; issue 4715.)

• Converting an integer or long integer to a decimal string was made faster by special-casing base 10 instead of
using a generalized conversion function that supports arbitrary bases. (Patch by Gawain Bolton; issue 6713.)

• The split(), replace(), rindex(), rpartition(), and rsplit() methods of string-like types
(strings, Unicode strings, and bytearray objects) now use a fast reverse-search algorithm instead of a
character-by-character scan. This is sometimes faster by a factor of 10. (Added by Florent Xicluna; issue
7462 and issue 7622.)

• The pickle and cPickle modules now automatically intern the strings used for attribute names, reducing
memory usage of the objects resulting from unpickling. (Contributed by Jake McGuire; issue 5084.)

• The cPickle module now special-cases dictionaries, nearly halving the time required to pickle them. (Con-
tributed by Collin Winter; issue 5670.)

11 New and Improved Modules

As in every release, Python’s standard library received a number of enhancements and bug fixes. Here’s a partial list
of the most notable changes, sorted alphabetically by module name. Consult the Misc/NEWS file in the source tree

https://bugs.python.org/issue4074
https://bugs.python.org/issue4688
https://bugs.python.org/issue4258
https://bugs.python.org/issue5260
https://bugs.python.org/issue5512
https://bugs.python.org/issue1087418
https://bugs.python.org/issue5176
https://bugs.python.org/issue4715
https://bugs.python.org/issue6713
https://bugs.python.org/issue7462
https://bugs.python.org/issue7462
https://bugs.python.org/issue7622
https://bugs.python.org/issue5084
https://bugs.python.org/issue5670

for a more complete list of changes, or look through the Subversion logs for all the details.

• The bdb module’s base debugging class Bdb gained a feature for skipping modules. The constructor now
takes an iterable containing glob-style patterns such as django.*; the debugger will not step into stack frames
from a module that matches one of these patterns. (Contributed by Maru Newby after a suggestion by Senthil
Kumaran; issue 5142.)

• The binascii module now supports the buffer API, so it can be used with memoryview instances and other
similar buffer objects. (Backported from 3.x by Florent Xicluna; issue 7703.)

• Updated module: the bsddb module has been updated from 4.7.2devel9 to version 4.8.4 of the pybsddb pack-
age. The new version features better Python 3.x compatibility, various bug fixes, and adds several new Berke-
leyDB flags and methods. (Updated by Jesús Cea Avión; issue 8156. The pybsddb changelog can be read at
http://hg.jcea.es/pybsddb/file/tip/ChangeLog.)

• The bz2 module’s BZ2File now supports the context management protocol, so you can write with
bz2.BZ2File(...) as f:. (Contributed by Hagen Fürstenau; issue 3860.)

• New class: the Counter class in the collections module is useful for tallying data. Counter instances
behave mostly like dictionaries but return zero for missing keys instead of raising a KeyError:

>>> from collections import Counter
>>> c = Counter()
>>> for letter in 'here is a sample of english text':
... c[letter] += 1
...
>>> c
Counter({' ': 6, 'e': 5, 's': 3, 'a': 2, 'i': 2, 'h': 2,
'l': 2, 't': 2, 'g': 1, 'f': 1, 'm': 1, 'o': 1, 'n': 1,
'p': 1, 'r': 1, 'x': 1})
>>> c['e']
5
>>> c['z']
0

There are three additional Counter methods. most_common() returns the N most common elements and
their counts. elements() returns an iterator over the contained elements, repeating each element as many
times as its count. subtract() takes an iterable and subtracts one for each element instead of adding; if the
argument is a dictionary or another Counter, the counts are subtracted.

>>> c.most_common(5)
[(' ', 6), ('e', 5), ('s', 3), ('a', 2), ('i', 2)]
>>> c.elements() ->

'a', 'a', ' ', ' ', ' ', ' ', ' ', ' ',
'e', 'e', 'e', 'e', 'e', 'g', 'f', 'i', 'i',
'h', 'h', 'm', 'l', 'l', 'o', 'n', 'p', 's',
's', 's', 'r', 't', 't', 'x'

>>> c['e']
5
>>> c.subtract('very heavy on the letter e')
>>> c['e'] # Count is now lower
-1

Contributed by Raymond Hettinger; issue 1696199.

New class: OrderedDict is described in the earlier section PEP 372: Adding an Ordered Dictionary to
collections.

New method: The deque data type now has a count() method that returns the number of contained elements

https://bugs.python.org/issue5142
https://bugs.python.org/issue7703
http://www.jcea.es/programacion/pybsddb.htm
http://www.jcea.es/programacion/pybsddb.htm
https://bugs.python.org/issue8156
http://hg.jcea.es/pybsddb/file/tip/ChangeLog
https://bugs.python.org/issue3860
https://bugs.python.org/issue1696199

equal to the supplied argument x, and a reverse() method that reverses the elements of the deque in-place.
deque also exposes its maximum length as the read-only maxlen attribute. (Both features added by Raymond
Hettinger.)

The namedtuple class now has an optional rename parameter. If rename is true, field names that are invalid
because they’ve been repeated or aren’t legal Python identifiers will be renamed to legal names that are derived
from the field’s position within the list of fields:

>>> from collections import namedtuple
>>> T = namedtuple('T', ['field1', '$illegal', 'for', 'field2'], rename=True)
>>> T._fields
('field1', '_1', '_2', 'field2')

(Added by Raymond Hettinger; issue 1818.)

Finally, the Mapping abstract base class now returns NotImplemented if a mapping is compared to another
type that isn’t a Mapping. (Fixed by Daniel Stutzbach; issue 8729.)

• Constructors for the parsing classes in the ConfigParser module now take a allow_no_value parameter,
defaulting to false; if true, options without values will be allowed. For example:

>>> import ConfigParser, StringIO
>>> sample_config = """
... [mysqld]
... user = mysql
... pid-file = /var/run/mysqld/mysqld.pid
... skip-bdb
... """
>>> config = ConfigParser.RawConfigParser(allow_no_value=True)
>>> config.readfp(StringIO.StringIO(sample_config))
>>> config.get('mysqld', 'user')
'mysql'
>>> print config.get('mysqld', 'skip-bdb')
None
>>> print config.get('mysqld', 'unknown')
Traceback (most recent call last):

...
NoOptionError: No option 'unknown' in section: 'mysqld'

(Contributed by Mats Kindahl; issue 7005.)

• Deprecated function: contextlib.nested(), which allows handling more than one context manager with
a single with statement, has been deprecated, because the with statement now supports multiple context
managers.

• The cookielib module now ignores cookies that have an invalid version field, one that doesn’t contain an
integer value. (Fixed by John J. Lee; issue 3924.)

• The copy module’s deepcopy() function will now correctly copy bound instance methods. (Implemented
by Robert Collins; issue 1515.)

• The ctypes module now always converts None to a C NULL pointer for arguments declared as pointers.
(Changed by Thomas Heller; issue 4606.) The underlying libffi library has been updated to version 3.0.9,
containing various fixes for different platforms. (Updated by Matthias Klose; issue 8142.)

• New method: the datetime module’s timedelta class gained a total_seconds() method that returns
the number of seconds in the duration. (Contributed by Brian Quinlan; issue 5788.)

• New method: the Decimal class gained a from_float() class method that performs an exact
conversion of a floating-point number to a Decimal. This exact conversion strives for the clos-

https://bugs.python.org/issue1818
https://bugs.python.org/issue8729
https://bugs.python.org/issue7005
https://bugs.python.org/issue3924
https://bugs.python.org/issue1515
https://bugs.python.org/issue4606
http://sourceware.org/libffi/
https://bugs.python.org/issue8142
https://bugs.python.org/issue5788

est decimal approximation to the floating-point representation’s value; the resulting decimal value will
therefore still include the inaccuracy, if any. For example, Decimal.from_float(0.1) returns
Decimal(’0.1000000000000000055511151231257827021181583404541015625’). (Imple-
mented by Raymond Hettinger; issue 4796.)

Comparing instances of Decimal with floating-point numbers now produces sensible results based on the
numeric values of the operands. Previously such comparisons would fall back to Python’s default rules for
comparing objects, which produced arbitrary results based on their type. Note that you still cannot combine
Decimal and floating-point in other operations such as addition, since you should be explicitly choosing how
to convert between float and Decimal. (Fixed by Mark Dickinson; issue 2531.)

The constructor for Decimal now accepts floating-point numbers (added by Raymond Hettinger; issue 8257)
and non-European Unicode characters such as Arabic-Indic digits (contributed by Mark Dickinson; issue 6595).

Most of the methods of the Context class now accept integers as well as Decimal instances; the only
exceptions are the canonical() and is_canonical() methods. (Patch by Juan José Conti; issue 7633.)

When using Decimal instances with a string’s format() method, the default alignment was previously left-
alignment. This has been changed to right-alignment, which is more sensible for numeric types. (Changed by
Mark Dickinson; issue 6857.)

Comparisons involving a signaling NaN value (or sNAN) now signal InvalidOperation instead of silently
returning a true or false value depending on the comparison operator. Quiet NaN values (or NaN) are now
hashable. (Fixed by Mark Dickinson; issue 7279.)

• The difflib module now produces output that is more compatible with modern diff/patch tools through one
small change, using a tab character instead of spaces as a separator in the header giving the filename. (Fixed by
Anatoly Techtonik; issue 7585.)

• The Distutils sdist command now always regenerates the MANIFEST file, since even if the MANIFEST.in
or setup.py files haven’t been modified, the user might have created some new files that should be included.
(Fixed by Tarek Ziadé; issue 8688.)

• The doctest module’s IGNORE_EXCEPTION_DETAIL flag will now ignore the name of the module con-
taining the exception being tested. (Patch by Lennart Regebro; issue 7490.)

• The email module’s Message class will now accept a Unicode-valued payload, automatically converting the
payload to the encoding specified by output_charset. (Added by R. David Murray; issue 1368247.)

• The Fraction class now accepts a single float or Decimal instance, or two rational numbers, as arguments
to its constructor. (Implemented by Mark Dickinson; rationals added in issue 5812, and float/decimal in issue
8294.)

Ordering comparisons (<, <=, >, >=) between fractions and complex numbers now raise a TypeError. This
fixes an oversight, making the Fraction match the other numeric types.

• New class: FTP_TLS in the ftplib module provides secure FTP connections using TLS encapsulation of
authentication as well as subsequent control and data transfers. (Contributed by Giampaolo Rodola; issue 2054.)

The storbinary() method for binary uploads can now restart uploads thanks to an added rest parameter
(patch by Pablo Mouzo; issue 6845.)

• New class decorator: total_ordering() in the functools module takes a class that defines an
__eq__() method and one of __lt__(), __le__(), __gt__(), or __ge__(), and generates the miss-
ing comparison methods. Since the __cmp__() method is being deprecated in Python 3.x, this decorator
makes it easier to define ordered classes. (Added by Raymond Hettinger; issue 5479.)

New function: cmp_to_key() will take an old-style comparison function that expects two arguments and
return a new callable that can be used as the key parameter to functions such as sorted(), min() and max(),
etc. The primary intended use is to help with making code compatible with Python 3.x. (Added by Raymond
Hettinger.)

https://bugs.python.org/issue4796
https://bugs.python.org/issue2531
https://bugs.python.org/issue8257
https://bugs.python.org/issue6595
https://bugs.python.org/issue7633
https://bugs.python.org/issue6857
https://bugs.python.org/issue7279
https://bugs.python.org/issue7585
https://bugs.python.org/issue8688
https://bugs.python.org/issue7490
https://bugs.python.org/issue1368247
https://bugs.python.org/issue5812
https://bugs.python.org/issue8294
https://bugs.python.org/issue8294
https://bugs.python.org/issue2054
https://bugs.python.org/issue6845
https://bugs.python.org/issue5479

• New function: the gc module’s is_tracked() returns true if a given instance is tracked by the garbage
collector, false otherwise. (Contributed by Antoine Pitrou; issue 4688.)

• The gzip module’s GzipFile now supports the context management protocol, so you can write with
gzip.GzipFile(...) as f: (contributed by Hagen Fürstenau; issue 3860), and it now implements the
io.BufferedIOBase ABC, so you can wrap it with io.BufferedReader for faster processing (con-
tributed by Nir Aides; issue 7471). It’s also now possible to override the modification time recorded in a gzipped
file by providing an optional timestamp to the constructor. (Contributed by Jacques Frechet; issue 4272.)

Files in gzip format can be padded with trailing zero bytes; the gzip module will now consume these trailing
bytes. (Fixed by Tadek Pietraszek and Brian Curtin; issue 2846.)

• New attribute: the hashlib module now has an algorithms attribute containing a tuple naming the sup-
ported algorithms. In Python 2.7, hashlib.algorithms contains (’md5’, ’sha1’, ’sha224’,
’sha256’, ’sha384’, ’sha512’). (Contributed by Carl Chenet; issue 7418.)

• The default HTTPResponse class used by the httplib module now supports buffering, resulting in much
faster reading of HTTP responses. (Contributed by Kristján Valur Jónsson; issue 4879.)

The HTTPConnection and HTTPSConnection classes now support a source_address parameter, a
(host, port) 2-tuple giving the source address that will be used for the connection. (Contributed by Eldon
Ziegler; issue 3972.)

• The ihooks module now supports relative imports. Note that ihooks is an older module for customizing
imports, superseded by the imputil module added in Python 2.0. (Relative import support added by Neil
Schemenauer.)

• The imaplib module now supports IPv6 addresses. (Contributed by Derek Morr; issue 1655.)

• New function: the inspect module’s getcallargs() takes a callable and its positional and keyword
arguments, and figures out which of the callable’s parameters will receive each argument, returning a dictionary
mapping argument names to their values. For example:

>>> from inspect import getcallargs
>>> def f(a, b=1, *pos, **named):
... pass
>>> getcallargs(f, 1, 2, 3)
{'a': 1, 'b': 2, 'pos': (3,), 'named': {}}
>>> getcallargs(f, a=2, x=4)
{'a': 2, 'b': 1, 'pos': (), 'named': {'x': 4}}
>>> getcallargs(f)
Traceback (most recent call last):
...
TypeError: f() takes at least 1 argument (0 given)

Contributed by George Sakkis; issue 3135.

• Updated module: The io library has been upgraded to the version shipped with Python 3.1. For 3.1, the I/O
library was entirely rewritten in C and is 2 to 20 times faster depending on the task being performed. The
original Python version was renamed to the _pyio module.

One minor resulting change: the io.TextIOBase class now has an errors attribute giving the error setting
used for encoding and decoding errors (one of ’strict’, ’replace’, ’ignore’).

The io.FileIO class now raises an OSError when passed an invalid file descriptor. (Implemented by
Benjamin Peterson; issue 4991.) The truncate() method now preserves the file position; previously it
would change the file position to the end of the new file. (Fixed by Pascal Chambon; issue 6939.)

• New function: itertools.compress(data, selectors) takes two iterators. Elements of data are
returned if the corresponding value in selectors is true:

https://bugs.python.org/issue4688
https://bugs.python.org/issue3860
https://bugs.python.org/issue7471
https://bugs.python.org/issue4272
https://bugs.python.org/issue2846
https://bugs.python.org/issue7418
https://bugs.python.org/issue4879
https://bugs.python.org/issue3972
https://bugs.python.org/issue1655
https://bugs.python.org/issue3135
https://bugs.python.org/issue4991
https://bugs.python.org/issue6939

itertools.compress('ABCDEF', [1,0,1,0,1,1]) =>
A, C, E, F

New function: itertools.combinations_with_replacement(iter, r) returns all the possible
r-length combinations of elements from the iterable iter. Unlike combinations(), individual elements can
be repeated in the generated combinations:

itertools.combinations_with_replacement('abc', 2) =>
('a', 'a'), ('a', 'b'), ('a', 'c'),
('b', 'b'), ('b', 'c'), ('c', 'c')

Note that elements are treated as unique depending on their position in the input, not their actual values.

The itertools.count() function now has a step argument that allows incrementing by values other than
1. count() also now allows keyword arguments, and using non-integer values such as floats or Decimal
instances. (Implemented by Raymond Hettinger; issue 5032.)

itertools.combinations() and itertools.product() previously raised ValueError for val-
ues of r larger than the input iterable. This was deemed a specification error, so they now return an empty
iterator. (Fixed by Raymond Hettinger; issue 4816.)

• Updated module: The json module was upgraded to version 2.0.9 of the simplejson package, which includes
a C extension that makes encoding and decoding faster. (Contributed by Bob Ippolito; issue 4136.)

To support the new collections.OrderedDict type, json.load() now has an optional ob-
ject_pairs_hook parameter that will be called with any object literal that decodes to a list of pairs. (Contributed
by Raymond Hettinger; issue 5381.)

• The mailboxmodule’s Maildir class now records the timestamp on the directories it reads, and only re-reads
them if the modification time has subsequently changed. This improves performance by avoiding unneeded
directory scans. (Fixed by A.M. Kuchling and Antoine Pitrou; issue 1607951, issue 6896.)

• New functions: the math module gained erf() and erfc() for the error function and the complementary
error function, expm1() which computes e**x - 1 with more precision than using exp() and subtracting
1, gamma() for the Gamma function, and lgamma() for the natural log of the Gamma function. (Contributed
by Mark Dickinson and nirinA raseliarison; issue 3366.)

• The multiprocessing module’s Manager* classes can now be passed a callable that will be called when-
ever a subprocess is started, along with a set of arguments that will be passed to the callable. (Contributed by
lekma; issue 5585.)

The Pool class, which controls a pool of worker processes, now has an optional maxtasksperchild parameter.
Worker processes will perform the specified number of tasks and then exit, causing the Pool to start a new
worker. This is useful if tasks may leak memory or other resources, or if some tasks will cause the worker to
become very large. (Contributed by Charles Cazabon; issue 6963.)

• The nntplib module now supports IPv6 addresses. (Contributed by Derek Morr; issue 1664.)

• New functions: the os module wraps the following POSIX system calls: getresgid() and getresuid(),
which return the real, effective, and saved GIDs and UIDs; setresgid() and setresuid(), which set
real, effective, and saved GIDs and UIDs to new values; initgroups(), which initialize the group access list
for the current process. (GID/UID functions contributed by Travis H.; issue 6508. Support for initgroups added
by Jean-Paul Calderone; issue 7333.)

The os.fork() function now re-initializes the import lock in the child process; this fixes problems on Solaris
when fork() is called from a thread. (Fixed by Zsolt Cserna; issue 7242.)

• In the os.path module, the normpath() and abspath() functions now preserve Unicode; if their input
path is a Unicode string, the return value is also a Unicode string. (normpath() fixed by Matt Giuca in issue
5827; abspath() fixed by Ezio Melotti in issue 3426.)

https://bugs.python.org/issue5032
https://bugs.python.org/issue4816
https://bugs.python.org/issue4136
https://bugs.python.org/issue5381
https://bugs.python.org/issue1607951
https://bugs.python.org/issue6896
https://bugs.python.org/issue3366
https://bugs.python.org/issue5585
https://bugs.python.org/issue6963
https://bugs.python.org/issue1664
https://bugs.python.org/issue6508
https://bugs.python.org/issue7333
https://bugs.python.org/issue7242
https://bugs.python.org/issue5827
https://bugs.python.org/issue5827
https://bugs.python.org/issue3426

• The pydoc module now has help for the various symbols that Python uses. You can now do help(’<<’) or
help(’@’), for example. (Contributed by David Laban; issue 4739.)

• The re module’s split(), sub(), and subn() now accept an optional flags argument, for consistency with
the other functions in the module. (Added by Gregory P. Smith.)

• New function: run_path() in the runpy module will execute the code at a provided path argument. path
can be the path of a Python source file (example.py), a compiled bytecode file (example.pyc), a directory
(./package/), or a zip archive (example.zip). If a directory or zip path is provided, it will be added to
the front of sys.path and the module __main__ will be imported. It’s expected that the directory or zip
contains a __main__.py; if it doesn’t, some other __main__.py might be imported from a location later
in sys.path. This makes more of the machinery of runpy available to scripts that want to mimic the way
Python’s command line processes an explicit path name. (Added by Nick Coghlan; issue 6816.)

• New function: in the shutil module, make_archive() takes a filename, archive type (zip or tar-format),
and a directory path, and creates an archive containing the directory’s contents. (Added by Tarek Ziadé.)

shutil‘s copyfile() and copytree() functions now raise a SpecialFileError exception when
asked to copy a named pipe. Previously the code would treat named pipes like a regular file by opening them
for reading, and this would block indefinitely. (Fixed by Antoine Pitrou; issue 3002.)

• The signal module no longer re-installs the signal handler unless this is truly necessary, which fixes a bug that
could make it impossible to catch the EINTR signal robustly. (Fixed by Charles-Francois Natali; issue 8354.)

• New functions: in the site module, three new functions return various site- and user-specific
paths. getsitepackages() returns a list containing all global site-packages directories,
getusersitepackages() returns the path of the user’s site-packages directory, and getuserbase()
returns the value of the USER_BASE environment variable, giving the path to a directory that can be used to
store data. (Contributed by Tarek Ziadé; issue 6693.)

The site module now reports exceptions occurring when the sitecustomize module is imported, and will
no longer catch and swallow the KeyboardInterrupt exception. (Fixed by Victor Stinner; issue 3137.)

• The create_connection() function gained a source_address parameter, a (host, port) 2-tuple giv-
ing the source address that will be used for the connection. (Contributed by Eldon Ziegler; issue 3972.)

The recv_into() and recvfrom_into() methods will now write into objects that support the buffer
API, most usefully the bytearray and memoryview objects. (Implemented by Antoine Pitrou; issue 8104.)

• The SocketServer module’s TCPServer class now supports socket timeouts and disabling the Nagle
algorithm. The disable_nagle_algorithm class attribute defaults to False; if overridden to be True,
new request connections will have the TCP_NODELAY option set to prevent buffering many small sends
into a single TCP packet. The timeout class attribute can hold a timeout in seconds that will be applied
to the request socket; if no request is received within that time, handle_timeout() will be called and
handle_request() will return. (Contributed by Kristján Valur Jónsson; issue 6192 and issue 6267.)

• Updated module: the sqlite3 module has been updated to version 2.6.0 of the pysqlite package. Version
2.6.0 includes a number of bugfixes, and adds the ability to load SQLite extensions from shared libraries. Call
the enable_load_extension(True) method to enable extensions, and then call load_extension()
to load a particular shared library. (Updated by Gerhard Häring.)

• The ssl module’s SSLSocket objects now support the buffer API, which fixed a test suite failure (fix by
Antoine Pitrou; issue 7133) and automatically set OpenSSL’s SSL_MODE_AUTO_RETRY, which will prevent
an error code being returned from recv() operations that trigger an SSL renegotiation (fix by Antoine Pitrou;
issue 8222).

The ssl.wrap_socket() constructor function now takes a ciphers argument that’s a string listing the en-
cryption algorithms to be allowed; the format of the string is described in the OpenSSL documentation. (Added
by Antoine Pitrou; issue 8322.)

https://bugs.python.org/issue4739
https://bugs.python.org/issue6816
https://bugs.python.org/issue3002
https://bugs.python.org/issue8354
https://bugs.python.org/issue6693
https://bugs.python.org/issue3137
https://bugs.python.org/issue3972
https://bugs.python.org/issue8104
https://bugs.python.org/issue6192
https://bugs.python.org/issue6267
http://code.google.com/p/pysqlite/
https://bugs.python.org/issue7133
https://bugs.python.org/issue8222
http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT
https://bugs.python.org/issue8322

Another change makes the extension load all of OpenSSL’s ciphers and digest algorithms so that they’re all
available. Some SSL certificates couldn’t be verified, reporting an “unknown algorithm” error. (Reported by
Beda Kosata, and fixed by Antoine Pitrou; issue 8484.)

The version of OpenSSL being used is now available as the module attributes ssl.OPENSSL_VERSION (a
string), ssl.OPENSSL_VERSION_INFO (a 5-tuple), and ssl.OPENSSL_VERSION_NUMBER (an integer).
(Added by Antoine Pitrou; issue 8321.)

• The struct module will no longer silently ignore overflow errors when a value is too large for a particular
integer format code (one of bBhHiIlLqQ); it now always raises a struct.error exception. (Changed by
Mark Dickinson; issue 1523.) The pack() function will also attempt to use __index__() to convert and
pack non-integers before trying the __int__() method or reporting an error. (Changed by Mark Dickinson;
issue 8300.)

• New function: the subprocess module’s check_output() runs a command with a specified set of ar-
guments and returns the command’s output as a string when the command runs without error, or raises a
CalledProcessError exception otherwise.

>>> subprocess.check_output(['df', '-h', '.'])
'Filesystem Size Used Avail Capacity Mounted on\n
/dev/disk0s2 52G 49G 3.0G 94% /\n'

>>> subprocess.check_output(['df', '-h', '/bogus'])
...

subprocess.CalledProcessError: Command '['df', '-h', '/bogus']' returned non-zero exit status 1

(Contributed by Gregory P. Smith.)

The subprocess module will now retry its internal system calls on receiving an EINTR signal. (Reported by
several people; final patch by Gregory P. Smith in issue 1068268.)

• New function: is_declared_global() in the symtable module returns true for variables that are ex-
plicitly declared to be global, false for ones that are implicitly global. (Contributed by Jeremy Hylton.)

• The syslog module will now use the value of sys.argv[0] as the identifier instead of the previous default
value of ’python’. (Changed by Sean Reifschneider; issue 8451.)

• The sys.version_info value is now a named tuple, with attributes named major, minor, micro,
releaselevel, and serial. (Contributed by Ross Light; issue 4285.)

sys.getwindowsversion() also returns a named tuple, with attributes named major, minor, build,
platform, service_pack, service_pack_major, service_pack_minor, suite_mask, and
product_type. (Contributed by Brian Curtin; issue 7766.)

• The tarfile module’s default error handling has changed, to no longer suppress fatal errors. The default error
level was previously 0, which meant that errors would only result in a message being written to the debug log,
but because the debug log is not activated by default, these errors go unnoticed. The default error level is now
1, which raises an exception if there’s an error. (Changed by Lars Gustäbel; issue 7357.)

tarfile now supports filtering the TarInfo objects being added to a tar file. When you call add(), you
may supply an optional filter argument that’s a callable. The filter callable will be passed the TarInfo for
every file being added, and can modify and return it. If the callable returns None, the file will be excluded
from the resulting archive. This is more powerful than the existing exclude argument, which has therefore
been deprecated. (Added by Lars Gustäbel; issue 6856.) The TarFile class also now supports the context
management protocol. (Added by Lars Gustäbel; issue 7232.)

• The wait() method of the threading.Event class now returns the internal flag on exit. This means the
method will usually return true because wait() is supposed to block until the internal flag becomes true. The
return value will only be false if a timeout was provided and the operation timed out. (Contributed by Tim
Lesher; issue 1674032.)

https://bugs.python.org/issue8484
https://bugs.python.org/issue8321
https://bugs.python.org/issue1523
https://bugs.python.org/issue8300
https://bugs.python.org/issue1068268
https://bugs.python.org/issue8451
https://bugs.python.org/issue4285
https://bugs.python.org/issue7766
https://bugs.python.org/issue7357
https://bugs.python.org/issue6856
https://bugs.python.org/issue7232
https://bugs.python.org/issue1674032

• The Unicode database provided by the unicodedata module is now used internally to determine which
characters are numeric, whitespace, or represent line breaks. The database also includes information from the
Unihan.txt data file (patch by Anders Chrigström and Amaury Forgeot d’Arc; issue 1571184) and has been
updated to version 5.2.0 (updated by Florent Xicluna; issue 8024).

• The urlparse module’s urlsplit() now handles unknown URL schemes in a fashion compliant with
RFC 3986: if the URL is of the form "<something>://...", the text before the :// is treated as the
scheme, even if it’s a made-up scheme that the module doesn’t know about. This change may break code that
worked around the old behaviour. For example, Python 2.6.4 or 2.5 will return the following:

>>> import urlparse
>>> urlparse.urlsplit('invented://host/filename?query')
('invented', '', '//host/filename?query', '', '')

Python 2.7 (and Python 2.6.5) will return:

>>> import urlparse
>>> urlparse.urlsplit('invented://host/filename?query')
('invented', 'host', '/filename?query', '', '')

(Python 2.7 actually produces slightly different output, since it returns a named tuple instead of a standard tuple.)

The urlparse module also supports IPv6 literal addresses as defined by RFC 2732 (contributed by Senthil
Kumaran; issue 2987).

>>> urlparse.urlparse('http://[1080::8:800:200C:417A]/foo')
ParseResult(scheme='http', netloc='[1080::8:800:200C:417A]',

path='/foo', params='', query='', fragment='')

• New class: the WeakSet class in the weakref module is a set that only holds weak references to its elements;
elements will be removed once there are no references pointing to them. (Originally implemented in Python 3.x
by Raymond Hettinger, and backported to 2.7 by Michael Foord.)

• The ElementTree library, xml.etree, no longer escapes ampersands and angle brackets when outputting an
XML processing instruction (which looks like <?xml-stylesheet href="#style1"?>) or comment
(which looks like <!-- comment -->). (Patch by Neil Muller; issue 2746.)

• The XML-RPC client and server, provided by the xmlrpclib and SimpleXMLRPCServer modules, have
improved performance by supporting HTTP/1.1 keep-alive and by optionally using gzip encoding to compress
the XML being exchanged. The gzip compression is controlled by the encode_threshold attribute of
SimpleXMLRPCRequestHandler, which contains a size in bytes; responses larger than this will be com-
pressed. (Contributed by Kristján Valur Jónsson; issue 6267.)

• The zipfile module’s ZipFile now supports the context management protocol, so you can write with
zipfile.ZipFile(...) as f:. (Contributed by Brian Curtin; issue 5511.)

zipfile now also supports archiving empty directories and extracts them correctly. (Fixed by Kuba Wiec-
zorek; issue 4710.) Reading files out of an archive is faster, and interleaving read() and readline() now
works correctly. (Contributed by Nir Aides; issue 7610.)

The is_zipfile() function now accepts a file object, in addition to the path names accepted in earlier
versions. (Contributed by Gabriel Genellina; issue 4756.)

The writestr() method now has an optional compress_type parameter that lets you override the default
compression method specified in the ZipFile constructor. (Contributed by Ronald Oussoren; issue 6003.)

11.1 New module: importlib

Python 3.1 includes the importlib package, a re-implementation of the logic underlying Python’s import state-
ment. importlib is useful for implementors of Python interpreters and to users who wish to write new importers

https://bugs.python.org/issue1571184
https://bugs.python.org/issue8024
http://tools.ietf.org/html/rfc3986.html
http://tools.ietf.org/html/rfc2732.html
https://bugs.python.org/issue2987
https://bugs.python.org/issue2746
https://bugs.python.org/issue6267
https://bugs.python.org/issue5511
https://bugs.python.org/issue4710
https://bugs.python.org/issue7610
https://bugs.python.org/issue4756
https://bugs.python.org/issue6003

that can participate in the import process. Python 2.7 doesn’t contain the complete importlib package, but instead
has a tiny subset that contains a single function, import_module().

import_module(name, package=None) imports a module. name is a string containing the module or pack-
age’s name. It’s possible to do relative imports by providing a string that begins with a . character, such as
..utils.errors. For relative imports, the package argument must be provided and is the name of the pack-
age that will be used as the anchor for the relative import. import_module() both inserts the imported module
into sys.modules and returns the module object.

Here are some examples:

>>> from importlib import import_module
>>> anydbm = import_module('anydbm') # Standard absolute import
>>> anydbm
<module 'anydbm' from '/p/python/Lib/anydbm.py'>
>>> # Relative import
>>> file_util = import_module('..file_util', 'distutils.command')
>>> file_util
<module 'distutils.file_util' from '/python/Lib/distutils/file_util.pyc'>

importlib was implemented by Brett Cannon and introduced in Python 3.1.

11.2 New module: sysconfig

The sysconfig module has been pulled out of the Distutils package, becoming a new top-level module in its
own right. sysconfig provides functions for getting information about Python’s build process: compiler switches,
installation paths, the platform name, and whether Python is running from its source directory.

Some of the functions in the module are:

• get_config_var() returns variables from Python’s Makefile and the pyconfig.h file.

• get_config_vars() returns a dictionary containing all of the configuration variables.

• get_path() returns the configured path for a particular type of module: the standard library, site-specific
modules, platform-specific modules, etc.

• is_python_build() returns true if you’re running a binary from a Python source tree, and false otherwise.

Consult the sysconfig documentation for more details and for a complete list of functions.

The Distutils package and sysconfig are now maintained by Tarek Ziadé, who has also started a Distutils2 package
(source repository at https://hg.python.org/distutils2/) for developing a next-generation version of Distutils.

11.3 ttk: Themed Widgets for Tk

Tcl/Tk 8.5 includes a set of themed widgets that re-implement basic Tk widgets but have a more customizable appear-
ance and can therefore more closely resemble the native platform’s widgets. This widget set was originally called Tile,
but was renamed to Ttk (for “themed Tk”) on being added to Tcl/Tck release 8.5.

To learn more, read the ttk module documentation. You may also wish to read the Tcl/Tk manual page describing the
Ttk theme engine, available at http://www.tcl.tk/man/tcl8.5/TkCmd/ttk_intro.htm. Some screenshots of the Python/Ttk
code in use are at http://code.google.com/p/python-ttk/wiki/Screenshots.

The ttk module was written by Guilherme Polo and added in issue 2983. An alternate version called Tile.py,
written by Martin Franklin and maintained by Kevin Walzer, was proposed for inclusion in issue 2618, but the authors
argued that Guilherme Polo’s work was more comprehensive.

https://hg.python.org/distutils2/
http://www.tcl.tk/man/tcl8.5/TkCmd/ttk_intro.htm
http://code.google.com/p/python-ttk/wiki/Screenshots
https://bugs.python.org/issue2983
https://bugs.python.org/issue2618

11.4 Updated module: unittest

The unittest module was greatly enhanced; many new features were added. Most of these features
were implemented by Michael Foord, unless otherwise noted. The enhanced version of the module is down-
loadable separately for use with Python versions 2.4 to 2.6, packaged as the unittest2 package, from
https://pypi.python.org/pypi/unittest2.

When used from the command line, the module can automatically discover tests. It’s not as fancy as py.test or nose,
but provides a simple way to run tests kept within a set of package directories. For example, the following command
will search the test/ subdirectory for any importable test files named test*.py:

python -m unittest discover -s test

Consult the unittest module documentation for more details. (Developed in issue 6001.)

The main() function supports some other new options:

• -b or --buffer will buffer the standard output and standard error streams during each test. If the test passes,
any resulting output will be discarded; on failure, the buffered output will be displayed.

• -c or --catch will cause the control-C interrupt to be handled more gracefully. Instead of interrupting
the test process immediately, the currently running test will be completed and then the partial results up to
the interruption will be reported. If you’re impatient, a second press of control-C will cause an immediate
interruption.

This control-C handler tries to avoid causing problems when the code being tested or the tests being run have
defined a signal handler of their own, by noticing that a signal handler was already set and calling it. If this
doesn’t work for you, there’s a removeHandler() decorator that can be used to mark tests that should have
the control-C handling disabled.

• -f or --failfast makes test execution stop immediately when a test fails instead of continuing to execute
further tests. (Suggested by Cliff Dyer and implemented by Michael Foord; issue 8074.)

The progress messages now show ‘x’ for expected failures and ‘u’ for unexpected successes when run in verbose
mode. (Contributed by Benjamin Peterson.)

Test cases can raise the SkipTest exception to skip a test (issue 1034053).

The error messages for assertEqual(), assertTrue(), and assertFalse() failures now provide more
information. If you set the longMessage attribute of your TestCase classes to True, both the standard error
message and any additional message you provide will be printed for failures. (Added by Michael Foord; issue 5663.)

The assertRaises() method now returns a context handler when called without providing a callable object to
run. For example, you can write this:

with self.assertRaises(KeyError):
{}['foo']

(Implemented by Antoine Pitrou; issue 4444.)

Module- and class-level setup and teardown fixtures are now supported. Modules can contain setUpModule() and
tearDownModule() functions. Classes can have setUpClass() and tearDownClass() methods that must
be defined as class methods (using @classmethod or equivalent). These functions and methods are invoked when
the test runner switches to a test case in a different module or class.

The methods addCleanup() and doCleanups() were added. addCleanup() lets you add cleanup functions
that will be called unconditionally (after setUp() if setUp() fails, otherwise after tearDown()). This allows
for much simpler resource allocation and deallocation during tests (issue 5679).

A number of new methods were added that provide more specialized tests. Many of these methods were written by
Google engineers for use in their test suites; Gregory P. Smith, Michael Foord, and GvR worked on merging them into
Python’s version of unittest.

https://pypi.python.org/pypi/unittest2
http://pytest.org
http://code.google.com/p/python-nose/
https://bugs.python.org/issue6001
https://bugs.python.org/issue8074
https://bugs.python.org/issue1034053
https://bugs.python.org/issue5663
https://bugs.python.org/issue4444
https://bugs.python.org/issue5679

• assertIsNone() and assertIsNotNone() take one expression and verify that the result is or is not
None.

• assertIs() and assertIsNot() take two values and check whether the two values evaluate to the same
object or not. (Added by Michael Foord; issue 2578.)

• assertIsInstance() and assertNotIsInstance() check whether the resulting object is an instance
of a particular class, or of one of a tuple of classes. (Added by Georg Brandl; issue 7031.)

• assertGreater(), assertGreaterEqual(), assertLess(), and assertLessEqual() com-
pare two quantities.

• assertMultiLineEqual() compares two strings, and if they’re not equal, displays a helpful comparison
that highlights the differences in the two strings. This comparison is now used by default when Unicode strings
are compared with assertEqual().

• assertRegexpMatches() and assertNotRegexpMatches() checks whether the first argument is a
string matching or not matching the regular expression provided as the second argument (issue 8038).

• assertRaisesRegexp() checks whether a particular exception is raised, and then also checks that the
string representation of the exception matches the provided regular expression.

• assertIn() and assertNotIn() tests whether first is or is not in second.

• assertItemsEqual() tests whether two provided sequences contain the same elements.

• assertSetEqual() compares whether two sets are equal, and only reports the differences between the sets
in case of error.

• Similarly, assertListEqual() and assertTupleEqual() compare the specified types and explain
any differences without necessarily printing their full values; these methods are now used by default when
comparing lists and tuples using assertEqual(). More generally, assertSequenceEqual() compares
two sequences and can optionally check whether both sequences are of a particular type.

• assertDictEqual() compares two dictionaries and reports the differences; it’s now used by default
when you compare two dictionaries using assertEqual(). assertDictContainsSubset() checks
whether all of the key/value pairs in first are found in second.

• assertAlmostEqual() and assertNotAlmostEqual() test whether first and second are approxi-
mately equal. This method can either round their difference to an optionally-specified number of places (the
default is 7) and compare it to zero, or require the difference to be smaller than a supplied delta value.

• loadTestsFromName() properly honors the suiteClass attribute of the TestLoader. (Fixed by Mark
Roddy; issue 6866.)

• A new hook lets you extend the assertEqual() method to handle new data types. The
addTypeEqualityFunc() method takes a type object and a function. The function will be used when
both of the objects being compared are of the specified type. This function should compare the two objects and
raise an exception if they don’t match; it’s a good idea for the function to provide additional information about
why the two objects aren’t matching, much as the new sequence comparison methods do.

unittest.main() now takes an optional exit argument. If False, main() doesn’t call sys.exit(), allowing
main() to be used from the interactive interpreter. (Contributed by J. Pablo Fernández; issue 3379.)

TestResult has new startTestRun() and stopTestRun() methods that are called immediately before and
after a test run. (Contributed by Robert Collins; issue 5728.)

With all these changes, the unittest.py was becoming awkwardly large, so the module was turned into a package
and the code split into several files (by Benjamin Peterson). This doesn’t affect how the module is imported or used.

See also:

https://bugs.python.org/issue2578
https://bugs.python.org/issue7031
https://bugs.python.org/issue8038
https://bugs.python.org/issue6866
https://bugs.python.org/issue3379
https://bugs.python.org/issue5728

http://www.voidspace.org.uk/python/articles/unittest2.shtml Describes the new features, how to use them, and the
rationale for various design decisions. (By Michael Foord.)

11.5 Updated module: ElementTree 1.3

The version of the ElementTree library included with Python was updated to version 1.3. Some of the new features
are:

• The various parsing functions now take a parser keyword argument giving an XMLParser instance that will
be used. This makes it possible to override the file’s internal encoding:

p = ET.XMLParser(encoding='utf-8')
t = ET.XML("""<root/>""", parser=p)

Errors in parsing XML now raise a ParseError exception, whose instances have a position attribute
containing a (line, column) tuple giving the location of the problem.

• ElementTree’s code for converting trees to a string has been significantly reworked, making it roughly twice as
fast in many cases. The ElementTree.write() and Element.write() methods now have a method
parameter that can be “xml” (the default), “html”, or “text”. HTML mode will output empty elements as
<empty></empty> instead of <empty/>, and text mode will skip over elements and only output the text
chunks. If you set the tag attribute of an element to None but leave its children in place, the element will be
omitted when the tree is written out, so you don’t need to do more extensive rearrangement to remove a single
element.

Namespace handling has also been improved. All xmlns:<whatever> declarations are now output on the
root element, not scattered throughout the resulting XML. You can set the default namespace for a tree by
setting the default_namespace attribute and can register new prefixes with register_namespace().
In XML mode, you can use the true/false xml_declaration parameter to suppress the XML declaration.

• New Element method: extend() appends the items from a sequence to the element’s children. Elements
themselves behave like sequences, so it’s easy to move children from one element to another:

from xml.etree import ElementTree as ET

t = ET.XML("""<list>
<item>1</item> <item>2</item> <item>3</item>

</list>""")
new = ET.XML('<root/>')
new.extend(t)

Outputs <root><item>1</item>...</root>
print ET.tostring(new)

• New Element method: iter() yields the children of the element as a generator. It’s also possible to write
for child in elem: to loop over an element’s children. The existing method getiterator() is now
deprecated, as is getchildren() which constructs and returns a list of children.

• New Element method: itertext() yields all chunks of text that are descendants of the element. For
example:

t = ET.XML("""<list>
<item>1</item> <item>2</item> <item>3</item>

</list>""")

Outputs ['\n ', '1', ' ', '2', ' ', '3', '\n']
print list(t.itertext())

http://www.voidspace.org.uk/python/articles/unittest2.shtml

• Deprecated: using an element as a Boolean (i.e., if elem:) would return true if the element had any children,
or false if there were no children. This behaviour is confusing – None is false, but so is a childless element? –
so it will now trigger a FutureWarning. In your code, you should be explicit: write len(elem) != 0 if
you’re interested in the number of children, or elem is not None.

Fredrik Lundh develops ElementTree and produced the 1.3 version; you can read his article describing 1.3 at
http://effbot.org/zone/elementtree-13-intro.htm. Florent Xicluna updated the version included with Python, after dis-
cussions on python-dev and in issue 6472.)

12 Build and C API Changes

Changes to Python’s build process and to the C API include:

• The latest release of the GNU Debugger, GDB 7, can be scripted using Python. When you begin debugging an
executable program P, GDB will look for a file named P-gdb.py and automatically read it. Dave Malcolm
contributed a python-gdb.py that adds a number of commands useful when debugging Python itself. For
example, py-up and py-down go up or down one Python stack frame, which usually corresponds to several
C stack frames. py-print prints the value of a Python variable, and py-bt prints the Python stack trace.
(Added as a result of issue 8032.)

• If you use the .gdbinit file provided with Python, the “pyo” macro in the 2.7 version now works correctly
when the thread being debugged doesn’t hold the GIL; the macro now acquires it before printing. (Contributed
by Victor Stinner; issue 3632.)

• Py_AddPendingCall() is now thread-safe, letting any worker thread submit notifications to the main
Python thread. This is particularly useful for asynchronous IO operations. (Contributed by Kristján Valur
Jónsson; issue 4293.)

• New function: PyCode_NewEmpty() creates an empty code object; only the filename, function name, and
first line number are required. This is useful for extension modules that are attempting to construct a more useful
traceback stack. Previously such extensions needed to call PyCode_New(), which had many more arguments.
(Added by Jeffrey Yasskin.)

• New function: PyErr_NewExceptionWithDoc() creates a new exception class, just as the existing
PyErr_NewException() does, but takes an extra char * argument containing the docstring for the new
exception class. (Added by ‘lekma’ on the Python bug tracker; issue 7033.)

• New function: PyFrame_GetLineNumber() takes a frame object and returns the line number that the
frame is currently executing. Previously code would need to get the index of the bytecode instruction currently
executing, and then look up the line number corresponding to that address. (Added by Jeffrey Yasskin.)

• New functions: PyLong_AsLongAndOverflow() and PyLong_AsLongLongAndOverflow() ap-
proximates a Python long integer as a C long or long long. If the number is too large to fit into the
output type, an overflow flag is set and returned to the caller. (Contributed by Case Van Horsen; issue 7528 and
issue 7767.)

• New function: stemming from the rewrite of string-to-float conversion, a new PyOS_string_to_double()
function was added. The old PyOS_ascii_strtod() and PyOS_ascii_atof() functions are now dep-
recated.

• New function: PySys_SetArgvEx() sets the value of sys.argv and can optionally update sys.path to
include the directory containing the script named by sys.argv[0] depending on the value of an updatepath
parameter.

This function was added to close a security hole for applications that embed Python. The old function,
PySys_SetArgv(), would always update sys.path, and sometimes it would add the current directory.

http://effbot.org/zone/elementtree-13-intro.htm
https://bugs.python.org/issue6472
http://sourceware.org/gdb/current/onlinedocs/gdb/Python.html
https://bugs.python.org/issue8032
https://bugs.python.org/issue3632
https://bugs.python.org/issue4293
https://bugs.python.org/issue7033
https://bugs.python.org/issue7528
https://bugs.python.org/issue7767

This meant that, if you ran an application embedding Python in a directory controlled by someone else, attack-
ers could put a Trojan-horse module in the directory (say, a file named os.py) that your application would then
import and run.

If you maintain a C/C++ application that embeds Python, check whether you’re calling PySys_SetArgv()
and carefully consider whether the application should be using PySys_SetArgvEx() with updatepath set to
false.

Security issue reported as CVE-2008-5983; discussed in issue 5753, and fixed by Antoine Pitrou.

• New macros: the Python header files now define the following macros: Py_ISALNUM, Py_ISALPHA,
Py_ISDIGIT, Py_ISLOWER, Py_ISSPACE, Py_ISUPPER, Py_ISXDIGIT, Py_TOLOWER, and
Py_TOUPPER. All of these functions are analogous to the C standard macros for classifying characters, but
ignore the current locale setting, because in several places Python needs to analyze characters in a locale-
independent way. (Added by Eric Smith; issue 5793.)

• Removed function: PyEval_CallObject is now only available as a macro. A function version was being
kept around to preserve ABI linking compatibility, but that was in 1997; it can certainly be deleted by now.
(Removed by Antoine Pitrou; issue 8276.)

• New format codes: the PyFormat_FromString(), PyFormat_FromStringV(), and
PyErr_Format() functions now accept %lld and %llu format codes for displaying C’s long long
types. (Contributed by Mark Dickinson; issue 7228.)

• The complicated interaction between threads and process forking has been changed. Previously, the child pro-
cess created by os.fork() might fail because the child is created with only a single thread running, the thread
performing the os.fork(). If other threads were holding a lock, such as Python’s import lock, when the fork
was performed, the lock would still be marked as “held” in the new process. But in the child process nothing
would ever release the lock, since the other threads weren’t replicated, and the child process would no longer be
able to perform imports.

Python 2.7 acquires the import lock before performing an os.fork(), and will also clean up any locks created
using the threading module. C extension modules that have internal locks, or that call fork() themselves,
will not benefit from this clean-up.

(Fixed by Thomas Wouters; issue 1590864.)

• The Py_Finalize() function now calls the internal threading._shutdown() function; this prevents
some exceptions from being raised when an interpreter shuts down. (Patch by Adam Olsen; issue 1722344.)

• When using the PyMemberDef structure to define attributes of a type, Python will no longer let you try to
delete or set a T_STRING_INPLACE attribute.

• Global symbols defined by the ctypes module are now prefixed with Py, or with _ctypes. (Implemented
by Thomas Heller; issue 3102.)

• New configure option: the --with-system-expat switch allows building the pyexpat module to use the
system Expat library. (Contributed by Arfrever Frehtes Taifersar Arahesis; issue 7609.)

• New configure option: the --with-valgrind option will now disable the pymalloc allocator, which is dif-
ficult for the Valgrind memory-error detector to analyze correctly. Valgrind will therefore be better at detecting
memory leaks and overruns. (Contributed by James Henstridge; issue 2422.)

• New configure option: you can now supply an empty string to --with-dbmliborder= in order to disable
all of the various DBM modules. (Added by Arfrever Frehtes Taifersar Arahesis; issue 6491.)

• The configure script now checks for floating-point rounding bugs on certain 32-bit Intel chips and defines a
X87_DOUBLE_ROUNDING preprocessor definition. No code currently uses this definition, but it’s available if
anyone wishes to use it. (Added by Mark Dickinson; issue 2937.)

configure also now sets a LDCXXSHARED Makefile variable for supporting C++ linking. (Contributed by
Arfrever Frehtes Taifersar Arahesis; issue 1222585.)

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983
https://bugs.python.org/issue5753
https://bugs.python.org/issue5793
https://bugs.python.org/issue8276
https://bugs.python.org/issue7228
https://bugs.python.org/issue1590864
https://bugs.python.org/issue1722344
https://bugs.python.org/issue3102
https://bugs.python.org/issue7609
https://bugs.python.org/issue2422
https://bugs.python.org/issue6491
https://bugs.python.org/issue2937
https://bugs.python.org/issue1222585

• The build process now creates the necessary files for pkg-config support. (Contributed by Clinton Roy; issue
3585.)

• The build process now supports Subversion 1.7. (Contributed by Arfrever Frehtes Taifersar Arahesis; issue
6094.)

12.1 Capsules

Python 3.1 adds a new C datatype, PyCapsule, for providing a C API to an extension module. A capsule is es-
sentially the holder of a C void * pointer, and is made available as a module attribute; for example, the socket
module’s API is exposed as socket.CAPI, and unicodedata exposes ucnhash_CAPI. Other extensions can
import the module, access its dictionary to get the capsule object, and then get the void * pointer, which will usually
point to an array of pointers to the module’s various API functions.

There is an existing data type already used for this, PyCObject, but it doesn’t provide type safety. Evil code written
in pure Python could cause a segmentation fault by taking a PyCObject from module A and somehow substituting
it for the PyCObject in module B. Capsules know their own name, and getting the pointer requires providing the
name:

void *vtable;

if (!PyCapsule_IsValid(capsule, "mymodule.CAPI") {
PyErr_SetString(PyExc_ValueError, "argument type invalid");
return NULL;

}

vtable = PyCapsule_GetPointer(capsule, "mymodule.CAPI");

You are assured that vtable points to whatever you’re expecting. If a different capsule was passed in,
PyCapsule_IsValid() would detect the mismatched name and return false. Refer to using-capsules for more
information on using these objects.

Python 2.7 now uses capsules internally to provide various extension-module APIs, but the
PyCObject_AsVoidPtr() was modified to handle capsules, preserving compile-time compatibility with
the CObject interface. Use of PyCObject_AsVoidPtr() will signal a PendingDeprecationWarning,
which is silent by default.

Implemented in Python 3.1 and backported to 2.7 by Larry Hastings; discussed in issue 5630.

12.2 Port-Specific Changes: Windows

• The msvcrt module now contains some constants from the crtassem.h
header file: CRT_ASSEMBLY_VERSION, VC_ASSEMBLY_PUBLICKEYTOKEN, and
LIBRARIES_ASSEMBLY_NAME_PREFIX. (Contributed by David Cournapeau; issue 4365.)

• The _winreg module for accessing the registry now implements the CreateKeyEx() and
DeleteKeyEx() functions, extended versions of previously-supported functions that take sev-
eral extra arguments. The DisableReflectionKey(), EnableReflectionKey(), and
QueryReflectionKey() were also tested and documented. (Implemented by Brian Curtin: issue
7347.)

• The new _beginthreadex() API is used to start threads, and the native thread-local storage functions are
now used. (Contributed by Kristján Valur Jónsson; issue 3582.)

• The os.kill() function now works on Windows. The signal value can be the constants CTRL_C_EVENT,
CTRL_BREAK_EVENT, or any integer. The first two constants will send Control-C and Control-Break

https://bugs.python.org/issue3585
https://bugs.python.org/issue3585
https://bugs.python.org/issue6094
https://bugs.python.org/issue6094
https://bugs.python.org/issue5630
https://bugs.python.org/issue4365
https://bugs.python.org/issue7347
https://bugs.python.org/issue7347
https://bugs.python.org/issue3582

keystroke events to subprocesses; any other value will use the TerminateProcess() API. (Contributed
by Miki Tebeka; issue 1220212.)

• The os.listdir() function now correctly fails for an empty path. (Fixed by Hirokazu Yamamoto; issue
5913.)

• The mimelib module will now read the MIME database from the Windows registry when initializing. (Patch
by Gabriel Genellina; issue 4969.)

12.3 Port-Specific Changes: Mac OS X

• The path /Library/Python/2.7/site-packages is now appended to sys.path, in order to share
added packages between the system installation and a user-installed copy of the same version. (Changed by
Ronald Oussoren; issue 4865.)

12.4 Port-Specific Changes: FreeBSD

• FreeBSD 7.1’s SO_SETFIB constant, used with getsockopt()/setsockopt() to select an alternate rout-
ing table, is now available in the socket module. (Added by Kyle VanderBeek; issue 8235.)

13 Other Changes and Fixes

• Two benchmark scripts, iobench and ccbench, were added to the Tools directory. iobenchmeasures the
speed of the built-in file I/O objects returned by open() while performing various operations, and ccbench
is a concurrency benchmark that tries to measure computing throughput, thread switching latency, and IO pro-
cessing bandwidth when performing several tasks using a varying number of threads.

• The Tools/i18n/msgfmt.py script now understands plural forms in .po files. (Fixed by Martin von
Löwis; issue 5464.)

• When importing a module from a .pyc or .pyo file with an existing .py counterpart, the co_filename
attributes of the resulting code objects are overwritten when the original filename is obsolete. This can happen if
the file has been renamed, moved, or is accessed through different paths. (Patch by Ziga Seilnacht and Jean-Paul
Calderone; issue 1180193.)

• The regrtest.py script now takes a --randseed= switch that takes an integer that will be used as the
random seed for the -r option that executes tests in random order. The -r option also reports the seed that was
used (Added by Collin Winter.)

• Another regrtest.py switch is -j, which takes an integer specifying how many tests run in parallel. This
allows reducing the total runtime on multi-core machines. This option is compatible with several other options,
including the -R switch which is known to produce long runtimes. (Added by Antoine Pitrou, issue 6152.) This
can also be used with a new -F switch that runs selected tests in a loop until they fail. (Added by Antoine
Pitrou; issue 7312.)

• When executed as a script, the py_compile.py module now accepts ’-’ as an argument, which will read
standard input for the list of filenames to be compiled. (Contributed by Piotr Ożarowski; issue 8233.)

14 Porting to Python 2.7

This section lists previously described changes and other bugfixes that may require changes to your code:

https://bugs.python.org/issue1220212
https://bugs.python.org/issue5913
https://bugs.python.org/issue5913
https://bugs.python.org/issue4969
https://bugs.python.org/issue4865
https://bugs.python.org/issue8235
https://bugs.python.org/issue5464
https://bugs.python.org/issue1180193
https://bugs.python.org/issue6152
https://bugs.python.org/issue7312
https://bugs.python.org/issue8233

• The range() function processes its arguments more consistently; it will now call __int__() on non-float,
non-integer arguments that are supplied to it. (Fixed by Alexander Belopolsky; issue 1533.)

• The string format() method changed the default precision used for floating-point and complex numbers from
6 decimal places to 12, which matches the precision used by str(). (Changed by Eric Smith; issue 5920.)

• Because of an optimization for the with statement, the special methods __enter__() and __exit__()
must belong to the object’s type, and cannot be directly attached to the object’s instance. This affects new-style
classes (derived from object) and C extension types. (issue 6101.)

• Due to a bug in Python 2.6, the exc_value parameter to __exit__() methods was often the string representa-
tion of the exception, not an instance. This was fixed in 2.7, so exc_value will be an instance as expected. (Fixed
by Florent Xicluna; issue 7853.)

• When a restricted set of attributes were set using __slots__, deleting an unset attribute would not raise
AttributeError as you would expect. Fixed by Benjamin Peterson; issue 7604.)

In the standard library:

• Operations with datetime instances that resulted in a year falling outside the supported range didn’t always
raise OverflowError. Such errors are now checked more carefully and will now raise the exception. (Re-
ported by Mark Leander, patch by Anand B. Pillai and Alexander Belopolsky; issue 7150.)

• When using Decimal instances with a string’s format() method, the default alignment was previously
left-alignment. This has been changed to right-alignment, which might change the output of your programs.
(Changed by Mark Dickinson; issue 6857.)

Comparisons involving a signaling NaN value (or sNAN) now signal InvalidOperation instead of silently
returning a true or false value depending on the comparison operator. Quiet NaN values (or NaN) are now
hashable. (Fixed by Mark Dickinson; issue 7279.)

• The ElementTree library, xml.etree, no longer escapes ampersands and angle brackets when outputting an
XML processing instruction (which looks like <?xml-stylesheet href=”#style1”?>) or comment (which looks
like <!– comment –>). (Patch by Neil Muller; issue 2746.)

• The readline() method of StringIO objects now does nothing when a negative length is requested, as
other file-like objects do. (issue 7348).

• The syslog module will now use the value of sys.argv[0] as the identifier instead of the previous default
value of ’python’. (Changed by Sean Reifschneider; issue 8451.)

• The tarfile module’s default error handling has changed, to no longer suppress fatal errors. The default error
level was previously 0, which meant that errors would only result in a message being written to the debug log,
but because the debug log is not activated by default, these errors go unnoticed. The default error level is now
1, which raises an exception if there’s an error. (Changed by Lars Gustäbel; issue 7357.)

• The urlparse module’s urlsplit() now handles unknown URL schemes in a fashion compliant with
RFC 3986: if the URL is of the form "<something>://...", the text before the :// is treated as the
scheme, even if it’s a made-up scheme that the module doesn’t know about. This change may break code that
worked around the old behaviour. For example, Python 2.6.4 or 2.5 will return the following:

>>> import urlparse
>>> urlparse.urlsplit('invented://host/filename?query')
('invented', '', '//host/filename?query', '', '')

Python 2.7 (and Python 2.6.5) will return:

>>> import urlparse
>>> urlparse.urlsplit('invented://host/filename?query')
('invented', 'host', '/filename?query', '', '')

(Python 2.7 actually produces slightly different output, since it returns a named tuple instead of a standard tuple.)

https://bugs.python.org/issue1533
https://bugs.python.org/issue5920
https://bugs.python.org/issue6101
https://bugs.python.org/issue7853
https://bugs.python.org/issue7604
https://bugs.python.org/issue7150
https://bugs.python.org/issue6857
https://bugs.python.org/issue7279
https://bugs.python.org/issue2746
https://bugs.python.org/issue7348
https://bugs.python.org/issue8451
https://bugs.python.org/issue7357
http://tools.ietf.org/html/rfc3986.html

For C extensions:

• C extensions that use integer format codes with the PyArg_Parse* family of functions will now raise a
TypeError exception instead of triggering a DeprecationWarning (issue 5080).

• Use the new PyOS_string_to_double() function instead of the old PyOS_ascii_strtod() and
PyOS_ascii_atof() functions, which are now deprecated.

For applications that embed Python:

• The PySys_SetArgvEx() function was added, letting applications close a security hole when the existing
PySys_SetArgv() function was used. Check whether you’re calling PySys_SetArgv() and carefully
consider whether the application should be using PySys_SetArgvEx() with updatepath set to false.

15 New Features Added to Python 2.7 Maintenance Releases

New features may be added to Python 2.7 maintenance releases when the situation genuinely calls for it. Any such
additions must go through the Python Enhancement Proposal process, and make a compelling case for why they can’t
be adequately addressed by either adding the new feature solely to Python 3, or else by publishing it on the Python
Package Index.

In addition to the specific proposals listed below, there is a general exemption allowing new -3 warnings to be added
in any Python 2.7 maintenance release.

15.1 PEP 434: IDLE Enhancement Exception for All Branches

PEP 434 describes a general exemption for changes made to the IDLE development environment shipped along with
Python. This exemption makes it possible for the IDLE developers to provide a more consistent user experience across
all supported versions of Python 2 and 3.

For details of any IDLE changes, refer to the NEWS file for the specific release.

15.2 PEP 466: Network Security Enhancements for Python 2.7

PEP 466 describes a number of network security enhancement proposals that have been approved for inclusion in
Python 2.7 maintenance releases, with the first of those changes appearing in the Python 2.7.7 release.

PEP 466 related features added in Python 2.7.7:

• hmac.compare_digest() was backported from Python 3 to make a timing attack resistant comparison
operation available to Python 2 applications. (Contributed by Alex Gaynor; issue 21306.)

• OpenSSL 1.0.1g was upgraded in the official Windows installers published on python.org. (Contributed by
Zachary Ware; issue 21462.)

PEP 466 related features added in Python 2.7.8:

• hashlib.pbkdf2_hmac() was backported from Python 3 to make a hashing algorithm suitable for secure
password storage broadly available to Python 2 applications. (Contributed by Alex Gaynor; issue 21304.)

• OpenSSL 1.0.1h was upgraded for the official Windows installers published on python.org. (contributed by
Zachary Ware in issue 21671 for CVE-2014-0224)

PEP 466 related features added in Python 2.7.9:

https://bugs.python.org/issue5080
http://www.python.org/dev/peps/pep-0434
http://www.python.org/dev/peps/pep-0466
http://www.python.org/dev/peps/pep-0466
https://bugs.python.org/issue21306
https://bugs.python.org/issue21462
http://www.python.org/dev/peps/pep-0466
https://bugs.python.org/issue21304
https://bugs.python.org/issue21671
http://www.python.org/dev/peps/pep-0466

• Most of Python 3.4’s ssl module was backported. This means ssl now supports Server Name Indication,
TLS1.x settings, access to the platform certificate store, the SSLContext class, and other features. (Con-
tributed by Alex Gaynor and David Reid; issue 21308.)

Refer to the “Version added: 2.7.9” notes in the module documentation for specific details.

• os.urandom() was changed to cache a file descriptor to /dev/urandom instead of reopening
/dev/urandom on every call. (Contributed by Alex Gaynor; issue 21305.)

• hashlib.algorithms_guaranteed and hashlib.algorithms_available were backported
from Python 3 to make it easier for Python 2 applications to select the strongest available hash algorithm.
(Contributed by Alex Gaynor in issue 21307)

15.3 PEP 477: Backport ensurepip (PEP 453) to Python 2.7

PEP 477 approves the inclusion of the PEP 453 ensurepip module and the improved documentation that was enabled
by it in the Python 2.7 maintenance releases, appearing first in the the Python 2.7.9 release.

Bootstrapping pip By Default

The new ensurepip module (defined in PEP 453) provides a standard cross-platform mechanism to bootstrap the
pip installer into Python installations. The version of pip included with Python 2.7.9 is pip 1.5.6, and future 2.7.x
maintenance releases will update the bundled version to the latest version of pip that is available at the time of creating
the release candidate.

By default, the commands pip, pipX and pipX.Y will be installed on all platforms (where X.Y stands for the
version of the Python installation), along with the pip Python package and its dependencies.

For CPython source builds on POSIX systems, the make install and make altinstall commands do not
bootstrap pip by default. This behaviour can be controlled through configure options, and overridden through Make-
file options.

On Windows and Mac OS X, the CPython installers now default to installing pip along with CPython itself (users
may opt out of installing it during the installation process). Window users will need to opt in to the automatic PATH
modifications to have pip available from the command line by default, otherwise it can still be accessed through the
Python launcher for Windows as py -m pip.

As discussed in the PEP, platform packagers may choose not to install these commands by default, as long as, when
invoked, they provide clear and simple directions on how to install them on that platform (usually using the system
package manager).

Documentation Changes

As part of this change, the installing-index and distributing-index sections of the documentation have been completely
redesigned as short getting started and FAQ documents. Most packaging documentation has now been moved out to
the Python Packaging Authority maintained Python Packaging User Guide and the documentation of the individual
projects.

However, as this migration is currently still incomplete, the legacy versions of those guides remaining available as
install-index and distutils-index.

See also:

PEP 453 – Explicit bootstrapping of pip in Python installations PEP written by Donald Stufft and Nick Coghlan,
implemented by Donald Stufft, Nick Coghlan, Martin von Löwis and Ned Deily.

https://bugs.python.org/issue21308
https://bugs.python.org/issue21305
https://bugs.python.org/issue21307
http://www.python.org/dev/peps/pep-0477
http://www.python.org/dev/peps/pep-0453
http://www.python.org/dev/peps/pep-0453
https://www.python.org/dev/peps/pep-0477/#disabling-ensurepip-by-downstream-distributors
http://packaging.python.org
http://www.python.org/dev/peps/pep-0453

15.4 PEP 476: Enabling certificate verification by default for stdlib http clients

httplib and modules which use it, such as urllib2 and xmlrpclib, will now verify that the server presents
a certificate which is signed by a CA in the platform trust store and whose hostname matches the hostname being
requested by default, significantly improving security for many applications.

For applications which require the old previous behavior, they can pass an alternate context:

import urllib2
import ssl

This disables all verification
context = ssl._create_unverified_context()

This allows using a specific certificate for the host, which doesn't need
to be in the trust store
context = ssl.create_default_context(cafile="/path/to/file.crt")

urllib2.urlopen("https://invalid-cert", context=context)

16 Acknowledgements

The author would like to thank the following people for offering suggestions, corrections and assistance with various
drafts of this article: Nick Coghlan, Philip Jenvey, Ryan Lovett, R. David Murray, Hugh Secker-Walker.

Index

E
environment variable

LDCXXSHARED, 28
PYTHONWARNINGS, 3, 13
USER_BASE, 20

L
LDCXXSHARED, 28

P
Python Enhancement Proposals

PEP 3106, 9
PEP 3137, 10
PEP 372, 5
PEP 373, 2
PEP 378, 6
PEP 389, 7
PEP 391, 9
PEP 434, 32
PEP 453, 33
PEP 466, 32
PEP 477, 33

PYTHONWARNINGS, 3, 13

R
RFC

RFC 2732, 22
RFC 3986, 22, 31

U
USER_BASE, 20

35

	The Future for Python 2.x
	Changes to the Handling of Deprecation Warnings
	Python 3.1 Features
	PEP 372: Adding an Ordered Dictionary to collections
	PEP 378: Format Specifier for Thousands Separator
	PEP 389: The argparse Module for Parsing Command Lines
	PEP 391: Dictionary-Based Configuration For Logging
	PEP 3106: Dictionary Views
	PEP 3137: The memoryview Object
	Other Language Changes
	Interpreter Changes
	Optimizations

	New and Improved Modules
	New module: importlib
	New module: sysconfig
	ttk: Themed Widgets for Tk
	Updated module: unittest
	Updated module: ElementTree 1.3

	Build and C API Changes
	Capsules
	Port-Specific Changes: Windows
	Port-Specific Changes: Mac OS X
	Port-Specific Changes: FreeBSD

	Other Changes and Fixes
	Porting to Python 2.7
	New Features Added to Python 2.7 Maintenance Releases
	PEP 434: IDLE Enhancement Exception for All Branches
	PEP 466: Network Security Enhancements for Python 2.7
	PEP 477: Backport ensurepip (PEP 453) to Python 2.7
	Bootstrapping pip By Default
	Documentation Changes

	PEP 476: Enabling certificate verification by default for stdlib http clients

	Acknowledgements
	Index

